首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the cellular retinoic acid-binding protein (CRABP) in some rat tissues has been determined, and the protein has been localized by immunocytochemical techniques in sections from rat testis. In the testis CRABP was found in the seminiferous tubuli with Sertoli cells and the spermatogonia most intensely stained. All other cells of the germinal epithelium appeared largely devoid of CRABP. By use of an enzyme-linked immunosorbent assay CRABP was quantitatively estimated in several tissues and the highest levels were found in testis and eye. Comparisons of the tissue levels of CRABP and of the cellular retinol-binding protein (CRBP) did not reveal any apparent correlation.  相似文献   

2.
In the present study we have examined the cellular localization and developmental changes of mRNAs for retinoid-binding proteins in rat testis. We demonstrate that mRNA (0.7 kb) for cellular retinol-binding protein (CRBP) is expressed only in Sertoli cells and peritubular cells. The mRNA for CRBP could not be detected in other testicular cells. In contrast, mRNA for cellular retinoic acid-binding protein (CRABP) was detected primarily in germ cells and to a small extent in tumor Leydig cells. The mRNA for CRABP in germ cells revealed distinct size heterogeneity and three distinct mRNA species were observed (1.0, 1.8, and 1.9 kb), in contrast to previous data for somatic cells where only the 1.0-kb mRNA has been reported. Messenger RNAs for retinoic acid receptor-alpha (RAR alpha) were detected in both somatic and haploid germ cells. The highest level of RAR alpha was seen in Sertoli cells, round spermatids, and tumor Leydig cells. Lower, but distinct, levels were observed in peritubular cells. Furthermore, we observed germ cell-specific species of RAR alpha mRNA (4 kb and approximately 7 kb). The smallest mRNA for RAR alpha (2.7 kb) in somatic cells was absent in germ cells. The levels of mRNAs for the various retinoid-binding proteins in whole testis obtained from rats of various ages confirmed this cellular localization. The mRNAs for CRBP, the small molecular size (2.7 kb) mRNA for RAR alpha (localized to somatic cells), and the 1-kb mRNA for CRABP showed an age-dependent decrease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The distribution and levels of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) were measured in rat testicular peritubular and Sertoli cells and in isolated rat pachytene spermatocytes and spermatids. Two Sertoli cell preparations, one containing some germ cells and another that had been osmotically shocked to destroy germ cells, were examined. CRBP and CRABP levels were measured by specific and sensitive radioimmunoassays. Testicular peritubular cell cytosol preparations were found to contain high levels of CRBP (1.48 +/- 0.87 microgram CRBP/mg protein) but CRABP could not be detected. The mean CRBP level in Sertoli cell preparations that contained some germ cells was 0.93 +/- 0.24 microgram CRBP/mg protein; this value was similar to the level of 1.11 +/- 0.20 microgram CRBP/mg protein measured for Sertoli cells free of germ cells. The level of CRABP found in Sertoli cell preparations containing germ cells (0.81 +/- 0.32 microgram CRABP/mg protein) was approximately five times greater than was observed in Sertoli cells free of germ cells (0.16 +/- 0.03 microgram CRABP/mg protein). CRBP and CRABP levels in cultured Sertoli cells were not affected by time in culture for up to five days of culture. Pachytene spermatocytes and spermatids were very enriched in CRABP (0.72 +/- 0.26 microgram CRABP/mg protein for spermatocytes and 0.65 +/- 0.21 microgram CRABP/ml protein for spermatids). A search for a high molecular weight retinol-binding protein did not demonstrate the existence of such a protein in Sertoli cell-conditioned medium. In summary, these studies provide quantitative information about the distribution of the cellular retinoid-binding proteins in the cell types that compose the rat testis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5.
Gonadotropin activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinases plays an important role in the regulation of testicular function. This study was undertaken to establish the expression of various subunits of cAMP-dependent protein kinases in different testicular cell types as well as during sexual maturation. RNA was extracted from cultured Sertoli cells, cultured peritubular cells, germ cells (pachytene spermatocytes, round spermatids), tumor Leydig cells, as well as whole testis from rats of various ages. Messenger RNA levels were studied by Northern analysis using available cDNA probes. The regulatory subunit (R) designated RII51 was found to be predominantly expressed in cAMP-stimulated Sertoli cells and tumor Leydig cells. Much lower levels were found in cultured peritubular cells and germ cells. A 2.9- and 3.2-kb mRNA for the RI subunit were found at about similar levels in all cell types, whereas the smaller 1.7-kb mRNA was expressed in high levels in germ cells. Also, the catalytic subunit (C) of cAMP-dependent protein kinase, designated C alpha, was expressed in all cell types; the highest mRNA levels for this subunit were found in germ cells and in tumor Leydig cells. The 1.7-kb mRNA for androgen-binding protein (ABP) was abundant in cAMP-stimulated Sertoli cells and was not present in other cell types of the testis. Furthermore, the cellular localization of the cAMP-dependent protein kinase subunits was also supported by developmental studies. The mRNA level of the RII51 3.2-kb species was relatively constant until Day 30, after which there was a tendency to decrease. A 1.6-kb message first appeared at greater ages. The mRNA for the smaller 1.7-kb species of RI, as well as the C alpha, showed a significant increase during development, supporting an enrichment of these mRNAs in germ cells. Messenger RNA levels for ABP were not detected in testis from 5- to 10-day-old rats but increased up to Day 30. After this age, mRNA for ABP revealed an age-dependent decrease, which parallels the relative increase of germ cells in the testis. In summary, these results demonstrate a clear pattern of cellular localization of the various mRNA species for subunits of the cAMP-dependent protein kinase in the rat testis.  相似文献   

6.
7.
A bovine adrenal cDNA library was constructed and a clone corresponding to cellular retinoic-acid-binding protein (CRABP) mRNA was isolated and sequenced. The insert of the clone corresponds to 75 bp of the 5' untranslated portion, the whole translated and the complete 3' untranslated portion of the bovine CRABP mRNA. A genomic Southern blot, probed with CRABP cDNA, indicated that only one copy of the gene is present in the human genome. Hybridizing bands in restricted chicken and fish DNA were also observed. Using the CRABP cDNA as probe we have located the human CRABP gene to chromosome 3 in hybridizations to mouse-human, hamster-human and rat-human cell hybrids. In situ hybridizations on rat testis cells probed with CRABP and cellular retinol-binding protein antisense mRNA indicate that both proteins are expressed in tubuli cells.  相似文献   

8.
Studies were conducted to explore the effects of differences in retinoid nutritional status and of sex on the tissue distribution and levels of cellular retinol-binding protein (CRBP) and of cellular retinoic acid-binding protein (CRABP) in the rat. Sensitive and specific radioimmunoassays were developed and employed to measure the levels of both CRBP and CRABP. Four groups of six male rats each were fed experimental diets that differed greatly in the amount and kind of retinoids provided, but were otherwise identical. These groups were comprised of rats that were normal controls, retinoid-deficient, retinoic acid-fed, and excess retinol-fed. A fifth group of six female rats was fed the control diet. Immunogens identical with rat testis CRBP and CRABP, as assessed by radioimmunoassay displacement curves, were found in every rat tissue examined (21 tissues in males, 18 in females). The highest levels of CRBP were found in the proximal portion of the epididymis, the liver, and kidney. The highest levels of CRABP were found in the seminal vesicles, vas deferens, and skin. A significant (p less than 0.01) inverse relationship was found between CRBP and CRABP levels in the different tissues of the male reproductive tract. In both males and females, CRBP levels were highest in the gonads and proximal portion of the reproductive tract and decreased distally, whereas the opposite was true for CRABP. Retinoid-deficient rats showed reduced tissue levels of CRBP; thus, tissue CRBP levels are influenced by diet and retinoid availability. No differences in tissue CRBP levels were found in the rats fed the control, the retinoic acid, or the excess retinol diets. Female control rats had higher CRBP levels than male controls in 4 of 15 tissues compared (liver, lung, thymus, and fat). In contrast, tissue CRABP levels showed no diet- or sex-dependent differences. Only in one tissue, the skin, were differences observed (lower CRABP in retinoid-deficient and in female rats). Thus, CRABP metabolism and levels appear to be minimally influenced by the amount or kind of retinoid ligand available or by sex.  相似文献   

9.
10.
A 3.4 kilobase cDNA complementary to rat transferrin receptor mRNA has been isolated from an adult rat testis cDNA library. The rat transferrin receptor nucleotide sequence was shown to be 82% similar to the human transferrin receptor sequence over the amino acid coding region and over 90% similar in the sequences known to be responsible for iron regulation in the human mRNA. The mRNA was shown by Northern blot analysis to be regulated by iron levels in Sertoli cells in culture. Iron depletion resulted in at least a 5-fold increase in receptor message in Sertoli cells, as well as in an actively growing testicular cell line (S10-7). The level of transferrin receptor mRNA in cultured Sertoli cells was not influenced by hormones; however, chronic administration of testosterone or FSH to hypophysectomized rats resulted in increased transferrin receptor mRNA levels in the testis. Northern blot analysis of mRNAs from testes of rats synchronized at various stages of the cycle of the seminiferous epithelium showed that transferrin receptor mRNA was differentially regulated throughout the cycle. Northern blots of mRNA from germinal cell populations derived from synchronized tests showed that the message was regulated in the nongerminal cell components of the tubule, most likely the Sertoli cell. The comparison of transferrin receptor mRNA levels in normal testes and testes from hypophysectomized rats, as well as in isolated germinal cells and cultured Sertoli cells, suggested that transferrin receptor mRNA levels were considerably higher in Sertoli cells than in other cell types of the seminiferous tubules.  相似文献   

11.
Postnatal testis differentiation involves transition through neonatal, pre-meiotic, meiotic, haploid, and mature stages. We have examined the qualitative and quantitative changes in rat testis RNAs that specifically hybridize to cDNAs encoding the cytoskeletal proteins, calmodulin, beta-actin, alpha- and beta-tubulin at ages corresponding to each of these developmental periods. We compared the species and relative levels of specific RNAs from testes of animals engaged in normal spermatogenesis with RNA from germ cell-depleted, Sertoli cell-enriched (SCE) testis. Distinct developmental patterns of expression of the specific RNAs were found with each of the cDNAs in the two animal models. A 2.2 kb (kilobase) actin RNA and a 2.7 kb beta-tubulin RNA are maximal at 5-10 days of age, suggesting these RNAs are required by somatic and germ cells in the postnatal phase prior to puberty. Between 19 and 29 days, when pachytene spermatocytes appear in significant numbers, there is a slight increase in the 2.2-kb actin RNA, but a 4- to 10-fold increase in RNAs hybridizing to cDNAs for calmodulin, alpha- and beta-tubulin. These changes are much less pronounced in the SCE testis than in the normal testis, indicating increases in these RNAs are related to germinal cell maturation. The germ cell-related increase in 1.8-kb beta-tubulin RNA appears to reflect a developmental "switch" in the gene from which the RNA is derived. This hypothesis is based on the observation that the ratio of hybridization of a chicken brain beta-tubulin cDNA versus a rat spleen beta-tubulin cDNA to the 1.8-kb RNA band increases more than 40-fold between 5 and 29 days of age in normal testis, but is constant in SCE testis. These data suggest that a specific beta-tubulin gene is activated in maturing germ cells. Analogously, a 2.1-kb alpha-tubulin RNA is found only in maturing normal testis and increases as spermatids are produced. A 2.0-kb beta-tubulin RNA, not found in normal testes, is maximal in maturing SCE testes, suggesting this RNA is of somatic cell origin. All of the RNA species studied, except the 2.0-kb beta-tubulin RNA, decrease between 5 and 19 days in SCE testes, as Sertoli cell mitotic activity wanes, indicating that their levels may be regulated by the developmental signals that influence mitosis.  相似文献   

12.
13.
A rat complementary DNA (cDNA) for the RI beta isoform of type I cyclic adenosine monophosphate (cAMP)-dependent protein kinase regulatory subunit was cloned and sequenced and was found to contain the entire protein coding and 3'-untranslated regions, with a single (ATTAAA) poly-adenylation site. The largest open reading frame was preceded by a short out-of-phase open reading frame, which is not seen in the corresponding mouse RI beta cDNA due to a single base substitution. The rat RI beta cDNA clone was 2,374 bases long and detected a rat mRNA of approximately 2.8 kilobases. Rat RI beta mRNA was abundant in adult rat brain and testis but was undetectable in other rat tissues. The rat RI beta cDNA also detected RI beta mRNA in mouse brain, but not mouse testis, from 10-week-old BALB/c or 10- and 6-week-old Swiss Webster mice. Thus, despite a 96% nucleotide identity in the coding region of RI beta in rat vs. mouse, there are at least two differences in these closely related species. First, there is a short open reading frame, which precedes the coding region in the rat but not the mouse. Second, unlike the mouse testis, the rat testis contains abundant levels of RI beta mRNA.  相似文献   

14.
15.
16.
Lecithin:retinol acyltransferase (LRAT), present in microsomes, catalyzes the transfer of the sn-1 fatty acid of phosphatidylcholine to retinol bound to a cellular retinol-binding protein. In the present study we have cloned mouse and rat liver LRAT cDNA and tested the hypothesis that LRAT mRNA, like LRAT activity, is regulated physiologically in a liver-specific manner. The nucleotide sequences of mouse and rat liver LRAT cDNA each encode a 231-amino acid protein with 94% similarity between these species, and approximately 80% similarity to a cDNA for LRAT from human retinal pigment epithelium. Expression of rat LRAT cDNA in HEK293T cells resulted in functional retinol esterification and storage. RNA from several rat tissues hybridized with liver LRAT cDNA. However, LRAT mRNA was virtually absent from the liver of vitamin A-deficient animals, while being unaffected in intestine and testis. LRAT mRNA was rapidly induced by retinoic acid (RA) in liver of vitamin A-deficient mice and rats (P < 0.01). LRAT mRNA and enzymatic activity were well correlated in the same livers of rats treated with exogenous RA (r = 0.895, P < 0.0001), and in a dietary study that encompassed a broad range of vitamin A exposure (r = 0.799, P < 0.0001). Liver total retinol of <100 nmol/g was associated with low LRAT expression (<33% of control).We propose that RA, derived exogenously or from metabolism, serves as an important signal of vitamin A status. The constitutive expression of liver LRAT during retinoid sufficiency would serve to divert retinol into storage pools, while the curtailment of LRAT expression in retinoid deficiency would maintain retinol for secretion and delivery to peripheral tissues.  相似文献   

17.
Parvalbumin, a Ca2+-binding protein, was isolated from rat testis. This is the first demonstration of the protein in endocrine glands. By using a rat parvalbumin cDNA probe, parvalbumin mRNA was demonstrated in the testis, indicating that the protein is synthesized in this tissue and that testis parvalbumin is a product of the same gene as the one encoding for muscle parvalbumin. Parvalbumin was localized by immunohistochemical methods in the Leydig cells and in the acrosome region of maturing spermatids (stages 1-15). The expression of parvalbumin during testis development was followed. High parvalbumin protein and mRNA levels were found at stages of highest Leydig cell activity, i.e. at late fetal stages until birth and again around postnatal day 50. This suggests that parvalbumin may be involved in the production of testosterone in Leydig cells, a process which is highly dependent on calcium.  相似文献   

18.
Retinoids (vitamin A derivatives) are important for normal embryogenesis and retinoic acid, an acidic derivative of vitamin A, was recently proposed to be an endogenous morphogen. Several retinoids are also potent teratogens. Using an autoradiographic technique, we have identified tissues and cells in early mouse embryos that are able to specifically accumulate a radiolabelled synthetic derivative of retinoic acid. Strong accumulation of radioactivity was seen in several neural crest derivatives and in specific areas of the CNS. Gel filtration analyses of cytosols from embryos that received the radiolabelled retinoid in utero suggested that cellular retinoic acid-binding protein (CRABP) was involved in the accumulation mechanism. Immunohistochemical localization confirmed that cells accumulating retinoids also expressed CRABP. Strong CRABP immunoreactivity was found in neural crest-derived mesenchyme of the craniofacial area, in visceral arches, in dorsal root ganglia and in cells along the gut and the major vessels of the trunk region. In CNS, CRABP expression and retinoid binding was largely restricted to the hindbrain, to a single layer of cells in the roof of the midbrain and to cells in the mantle layer of the neural tube. Our data suggest that cells in the embryo expressing CRABP are target cells for exogenous retinoids as well as endogenous retinoic acid. Retinoic acid may thus play an essential role in normal development of the CNS and of tissues derived from the neural crest. We propose that the teratogenic effects of exogenous retinoids are due to an interference with mechanisms by which endogenous retinoic acid regulates differentiation and pattern formation in these tissues.  相似文献   

19.
20.
The mouse testis contains two isotypes of cytochrome c, which differ in 14 of 104 amino acids: cytochrome cs is present in all somatic tissues and cytochrome cT is testis specific. The regulation of cytochrome cS and cytochrome cT gene expression during spermatogenesis was examined by Northern blot analysis using specific cDNA probes. Total RNA was isolated from adult tissues, enriched germinal cell populations and polysomal gradients of total testis and isolated germinal cells. Three cytochrome cS mRNAs were detected averaging 1.3 kb, 1.1 kb and 0.7 kb in all tissues examined; an additional 1.7 kb mRNA was observed in testis. Isolated germinal cells through prepuberal pachytene spermatocytes contained only the three smaller mRNAs; the 1.7 kb mRNA was enriched in round spermatids. All three smaller cytochrome cS mRNAs were present on polysomes; the 1.7 kb mRNA was non-polysomal. Cytochrome cT mRNA of 0.6-0.9 kb was detected in testis; mRNA levels were low in early spermatogonia and peaked in prepuberal pachytene spermatocytes. In adult pachytene spermatocytes, a subset of the cytochrome cT mRNAs, 0.7-0.9 kb, was present on polysomes; a shortened size class, 0.6-0.75 kb, was non-polysomal. A distinct, primarily non-polysomal, cytochrome cT 0.7 kb mRNA was present in round spermatids. These results indicate that (1) both cytochrome cS and cytochrome cT mRNAs are present in early meiotic cells, (2) a 1.7 kb cytochrome cS mRNA is post-meiotically expressed and non-polysomal and (3) cytochrome cS and cytochrome cT mRNAs are each developmentally and translationally regulated during spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号