首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in-frame deletion mutation in Epidermal Growth Receptor (EGFR), ΔEGFR is a common and potent oncogene in glioblastoma (GBM), promoting growth and survival of cancer cells. This mutated receptor is ligand independent and constitutively active. Its activity is low in intensity and thought to be qualitatively different from acutely ligand stimulated wild-type receptor implying that the preferred downstream targets of ΔEGFR play a significant role in malignancy. To understand the ΔEGFR signal, we compared it to that of a kinase-inactivated mutant of ΔEGFR and wild-type EGFR with shotgun phosphoproteomics using an electron-transfer dissociation (ETD) enabled ion trap mass spectrometer. We identified and quantified 354 phosphopeptides corresponding to 249 proteins. Among the ΔEGFR-associated phosphorylations were the previously described Gab1, c-Met and Mig-6, and also novel phosphorylations including that of STAT5 on Y694/9. We have confirmed the most prominent phosphorylation events in cultured cells and in murine xenograft models of glioblastoma. Pathway analysis of these proteins suggests a preference for an alternative signal transduction pathway by ΔEGFR compared to wild-type EGFR. This understanding will potentially benefit the search for new therapeutic targets for ΔEGFR expressing tumors.  相似文献   

2.
Annexins are Ca2+-binding, membrane-interacting proteins, widespread among eukaryotes, consisting usually of four structurally similar repeated domains. It is accepted that vertebrate annexins derive from a double genome duplication event. It has been postulated that a single domain annexin, if found, might represent a molecule related to the hypothetical ancestral annexin. The recent discovery of a single-domain annexin in a bacterium, Cytophaga hutchinsonii, apparently confirmed this hypothesis. Here, we present a more complex picture. Using remote sequence similarity detection tools, a survey of bacterial genomes was performed in search of annexin-like proteins. In total, we identified about thirty annexin homologues, including single-domain and multi-domain annexins, in seventeen bacterial species. The thorough search yielded, besides the known annexin homologue from C. hutchinsonii, homologues from the Bacteroidetes/Chlorobi phylum, from Gemmatimonadetes, from beta- and delta-Proteobacteria, and from Actinobacteria. The sequences of bacterial annexins exhibited remote but statistically significant similarity to sequence profiles built of the eukaryotic ones. Some bacterial annexins are equipped with additional, different domains, for example those characteristic for toxins. The variation in bacterial annexin sequences, much wider than that observed in eukaryotes, and different domain architectures suggest that annexins found in bacteria may actually descend from an ancestral bacterial annexin, from which eukaryotic annexins also originate. The hypothesis of an ancient origin of bacterial annexins has to be reconciled with the fact that remarkably few bacterial strains possess annexin genes compared to the thousands of known bacterial genomes and with the patchy, anomalous phylogenetic distribution of bacterial annexins. Thus, a massive annexin gene loss in several bacterial lineages or very divergent evolution would appear a likely explanation. Alternative evolutionary scenarios, involving horizontal gene transfer between bacteria and protozoan eukaryotes, in either direction, appear much less likely. Altogether, current evidence does not allow unequivocal judgement as to the origin of bacterial annexins.  相似文献   

3.
4.
5.
About two thirds of breast cancers in women are hormone-dependent and require estrogen for growth, its effects being mainly mediated through estrogen receptor α (ERα). Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposite effects on carcinogenesis, with DHA suppressing and AA promoting tumor growth both in vitro and in vivo. However, the mechanism is not clear. Here, we examined whether the effect is mediated through changes in ERα distribution. MCF-7 cells, an ERα-positive human breast cancer cell line, was cultured in estrogen-free medium containing 0, 10 or 60 μM DHA or AA, then were stimulated with estradiol. DHA supplementation resulted in down-regulation of ERα expression (particularly in the extranuclear fraction), a reduction in phosphorylated MAPK, a decrease in cyclin D1 levels and an inhibition in cell viability. In contrast, AA had no such effects. The DHA-induced decrease in ERα expression resulted from proteasome-dependent degradation and not from decreased ERα mRNA expression. We propose that breast cancer cell proliferation is inhibited by DHA through proteasome-dependent degradation of ERα, reduced cyclin D1 expression and inhibition of MAPK signaling.  相似文献   

6.
7.
8.
9.
10.
The stability of standard gene expression is an elementary prerequisite for internal standardisation of target gene expression data and many so called housekeeping genes with assumed stable expression can exhibit either up- or down-regulation under some experimental conditions. The developed, and herein presented, software called BestKeeper determines the best suited standards, out of ten candidates, and combines them into an index. The index can be compared with further ten target genes to decide, whether they are differentially expressed under an applied treatment. All data processing is based on crossing points. The BestKeeper software tool was validated on four housekeeping genes and 10 members of the somatotropic axis differentially expressed in bovine corpora lutea total RNA. The BestKeeper application and necessary information about data processing and handling can be downloaded on http://www.wzw.tum.de/gene-quantification/bestkeeper.html.  相似文献   

11.
12.
13.
The intramembrane-cleaving protease γ-secretase catalyzes the last step in the generation of toxic amyloid-β (Aβ) peptides and is a principal therapeutic target in Alzheimer's disease. Both preclinical and clinical studies have demonstrated that inhibition of γ-secretase is associated with prohibitive side effects due to suppression of Notch processing and signaling. Potentially safer are γ-secretase modulators (GSMs), which are small molecules that selectively lower generation of the highly amyloidogenic Aβ42 peptides but spare Notch processing. GSMs with nanomolar potency and favorable pharmacological properties have been described, but the molecular mechanism of GSMs remains uncertain and both the substrate amyloid precursor protein (APP) and subunits of the γ-secretase complex have been proposed as the molecular target of GSMs. We have generated a potent photo-probe based on an acidic GSM that lowers Aβ42 generation with an IC(50) of 290 nM in cellular assays. By combining in vivo photo-crosslinking with affinity purification, we demonstrated that this probe binds the N-terminal fragment of presenilin (PSEN), the catalytic subunit of the γ-secretase complex, in living cells. Labeling was not observed for APP or any of the other γ-secretase subunits. Binding was readily competed by structurally divergent acidic and non-acidic GSMs suggesting a shared mode of action. These findings indicate that potent acidic GSMs target presenilin to modulate the enzymatic activity of the γ-secretase complex.  相似文献   

14.
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.  相似文献   

15.
16.
Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM) assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light) versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.  相似文献   

17.
18.
Supramolecular self-assembly of amyloidogenic peptides is closely associated with numerous pathological conditions. For instance, Alzheimer´s disease (AD) is characterized by abundant amyloid plaques originating from the proteolytic cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Compounds named γ-secretase modulators (GSMs) can shift the substrate cleavage specificity of γ-secretase toward the production of non-amyloidogenic, shorter Aβ fragments. Herein, we describe the synthesis of highly potent acidic GSMs, equipped with a photoreactive diazirine moiety for photoaffinity labeling. The probes labeled the N-terminal fragment of presenilin (the catalytic subunit of γ-secretase), supporting a mode of action involving binding to γ-secretase. This fundamental step toward the elucidation of the molecular mechanism governing the GSM-induced shift in γ-secretase proteolytic specificity should pave the way for the development of improved drugs against AD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号