共查询到20条相似文献,搜索用时 15 毫秒
1.
GUO Yuanji QI Junlin KONG Liqun CHENG Xiaowen DONG Jie WANG Min ZHANG Ye GUO Junfeng WU Kunyu 《中国科学C辑(英文版)》2000,43(5)
Genetic analysis of three H1N2 viruses indicated that only HA genes of H1N2 viruses were similar to that of A/Guangdong/6/91(H1N1) virus (PR8-like strain), while the other seven genes of them were similar to those of H3N2 virus circulating in man in 1995. Therefore, it could be considered that the H1N2 viruses were derived from reassortment between PR8-like strain and H3N2 virus circulating in man in 1995. However, the genomes of H1N2 viruses were very similar to each other. So the H1N2 viruses isolated in 1998 were not derived from new reassortment between PR8-like strain and H3N2 virus circulating in man in 1998, but derived from the evolution of H1N2 virus found in 1995. 相似文献
2.
《Microbes and infection / Institut Pasteur》2015,17(1):54-61
In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade 2.3.2.1. Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. 相似文献
3.
4.
Katsushi Kanehira Nobuhiro Takemae Yuko Uchida Hirokazu Hikono Takehiko Saito 《Microbiology and immunology》2014,58(6):327-341
In 2013, three reassortant swine influenza viruses (SIVs)—two H1N2 and one H3N2—were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human‐like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human‐like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human‐lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human‐lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk. 相似文献
5.
6.
本文通过比较2011年分离培养的1株季节性甲型H1N1流行性感冒(简称流感)病毒(A/Shanghai/1167/2011(H1N1))与历年季节性甲型H1N1流感病毒的血凝素(HA)基因,追溯该病毒的基因变异与来源,探讨该毒株的出现对流感防控工作的意义.采用反转录-聚合酶链反应(RT-PCR)方法扩增病毒的HA和神经氨酸酶(NA)片段,并进行测序;应用分子生物学软件对获得的序列进行分析,绘制基因进化树;同时,通过血凝抑制试验检测2011年下半年健康人群中该流感病毒的抗体水平.结果显示,A/Shanghai/1167/2011(H1N1)的HA基因序列与世界卫生组织(WHO)2007~2008年季节性甲型H1N1流感病毒疫苗株A/Brisbane/59/2007(H1N1)最接近,同源性达99.2%,与新型甲型H1N1流感病毒A/California/07/2009疫苗株同源性仅为72.4%.其HA基因裂解位点为PSIQSR↓GLF,尚未出现高致病性的分子特征.HA片段共编码557个氨基酸,有9个潜在的糖基化位点,序列与2009年前WHO疫苗株A/NewCaledonia/20/1999(H1N1)、A/SolomonIslands/3/2006(H1N1)和/Brisbane/59/2007(H1N1)相比,分别有15、12和4处不同,这些差异分布在Sa、Sb、Ca1、Ca2、Cb 5个抗原决定簇的氨基酸差异分别有5、5和2处.该毒株在健康人群血清的抗体阳性率为34.33%,几何平均效价(GMT)为10.38.A/Shanghai/1167/2011(H1N1)是2011年出现在上海地区的一个季节性甲型H1N1流感病毒毒株,其抗原变异与既往季节性甲型H1N1流感病毒相比不大,但在以A(H1N1)pdm09为主要流行株的年份检测到散在发生的既往季节性甲型H1N1流感病毒毒株应当引起重视,其在人群中的抗体水平较低,易引起流行,需要提高对类流感人群中此种毒株的持续监测. 相似文献
7.
The discovery of microRNAs (miRNAs) is a remarkable breakthrough in the field of life science, and they are important actors which
regulate gene expression in diverse cellular processes. Recently, several reports indicated that miRNAs can also target viruses and regulate
virus replication. Here we discovered 36 pig-encoded miRNAs and 22 human-encoded miRNAs which have putative targets in swine
influenza virus (SIV) and Swine-Origin 2009 A/H1N1 influenza virus (S-OIV) genes respectively. Interestingly, the putative interactions of
ssc-miR-124a, ssc-miR-136 and ssc-miR-145 with their SIV target genes had been found to be maintained almost throughout all of the virus
evolution. Enrichment analysis of previously reported miRNA gene expression profiles revealed that three miRNAs are expressed at higher
levels in human lung or trachea tissue. The hsa-miR-145 and hsa-miR-92a putatively target the HA gene and hsa-miR-150 putatively targets
the PB2 gene. Analysis results based on the location distribution from which virus was isolated and sequence conservation imply that some
putative miRNA-mediated host-virus interactions may characterize the location-specificity. 相似文献
8.
Madhu Khanna Binod Kumar Neha Gupta Prashant Kumar Ankit Gupta V. K. Vijayan Harpreet Kaur 《Indian journal of microbiology》2009,49(4):365-369
“Survival of the fittest” is an old axiom laid down by the great evolutionist Charles Darwin and microorganisms seem to have
exploited this statement to a great extent. The ability of viruses to adapt themselves to the changing environment has made
it possible to inhabit itself in this vast world for the past millions of years. Experts are well versed with the fact that
influenza viruses have the capability to trade genetic components from one to the other within animal and human population.
In mid April 2009, the Centers for Disease Control and Prevention and the World Health Organization had recognized a dramatic
increase in number of influenza cases. These current 2009 infections were found to be caused by a new strain of influenza
type A H1N1 virus which is a re-assortment of several strains of influenza viruses commonly infecting human, avian, and swine
population. This evolution is quite dependent on swine population which acts as a main reservoir for the reassortment event
in virus. With the current rate of progress and the efforts of heath authorities worldwide, we have still not lost the race
against fighting this virus. This article gives an insight to the probable source of origin and the evolutionary progress
it has gone through that makes it a potential threat in the future, the current scenario and the possible measures that may
be explored to further strengthen the war against pandemic. 相似文献
9.
2009年4月初,在墨西哥和美国出现一种新型甲型(H1N1)流感病毒。该病毒通过人-人传播迅速在全球范围蔓延。该病毒拥有来自人流感病毒、禽流感病毒和猪流感病毒的基因片段,其HA基因与引发1918年大流行的流感病毒株的HA基因同源性很高。该病毒倾向于感染儿童、青少年、孕妇,以及具有心肺疾病的人。据观察,它在人群中的传播能力高于季节性流感。部分感染患者具有在季节性流感中罕见的呕吐和腹泻症状。先前的流感病毒大流行和2009年爆发的甲型H1N1流感病毒大流行表明,由于流感病毒变异速度快、容易发生基因重排,新产生的变异毒株很可能造成新的大流行,威胁人类健康。由于禽流感病毒和人流感病毒都能感染猪,猪被认为是通过基因重排生成新的大流行病毒的"混合容器"。 相似文献
10.
番鸭源H6N6亚型禽流感病毒全基因组的分子特征 总被引:2,自引:0,他引:2
【目的】为了丰富水禽源禽流感病毒的分子流行病学资料,明确我国国内首次分离的番鸭源H6N6亚型禽流感(Avian influenza virus,AIV)病毒A/Muscovy Duck/Fujian/FZ01/2008(H6N6)(以下简称MD/FJ/F1/08)全基因组的分子特征,弄清该病毒的遗传进化特点。【方法】对其8个基因片段分别进行扩增和序列测定,并利用分子生物学软件对测序结果进行序列分析。【结果】MD/FJ/F1/08的HA裂解位点附近的氨基酸序列为PSMKVIV↓GL,为非连续的碱性氨基酸,其静脉接种指数(the intravenoys pathogenicity index,IVPI)为0.15,推测其为一株低致病力AIV。其HA基因、NP基因、M基因和PB2基因均与我国台湾分离株A/duck/Kingmen/E322/04(H6N2)该基因的核苷酸同源性最高,分别高达94.2%、95.7%、97.2%和95.6%,均处于同一遗传进化分支。其NA基因和我国远东分离株A/duck/Eastern China/01/2007(H4N6)同源性最高,达97.1%;其颈部有11个氨基酸的缺失(TNSTTTIINNN),为N6亚型神经氨酸酶基因中首次报道,在遗传进化上和H4N6亚型AIV的NA基因处于相同的分支。NS基因和香港地区分离株A/duck/HongKong/3600/99(H6N2)同源性最高,达96.1%;PB1和PA均与高致病性禽流感病毒株A/duck/HongKong/140/1998(H5N1)同源性最高,达95.6%和96.7%。且MD/FJ/F1/08的8基因与H6N6亚型流感病毒北美洲分离代表株均不处在同一遗传进化分支上,相互之间遗传关系较远。【结论】MD/FJ/F1/08可能是由H6N2、H4N6和H5N1等多亚型AIV基因重组而成。 相似文献
11.
王利 《微生物学免疫学进展》2012,40(3):79-82
引起流感世界性大流行的主要原因与流感病毒表面抗原血凝素(HA)和神经氨酸酶(NA)频发的变异有很大关系,抗原的变异使得流感病毒可以逃逸机体的免疫防御,而且使许多应用中的疫苗失去防御效果。综述2009年世界暴发的H1N1新型流感病毒的结构在进化过程中发生的变异,有助于增加人们对流感病毒的了解,从而有效的治疗和预防流感大流行。 相似文献
12.
Thanyada Rungrotmongkol Pathumwadee Intharathep Nadtanet Nunthaboot Pornthep Sompornpisut Yong Poovorawan 《Biochemical and biophysical research communications》2009,385(3):390-394
The recent outbreak of the novel strain of influenza A (H1N1) virus has raised a global concern of the future risk of a pandemic. To understand at the molecular level how this new H1N1 virus can be inhibited by the current anti-influenza drugs and which of these drugs it is likely to already be resistant to, homology modeling and MD simulations have been applied on the H1N1 neuraminidase complexed with oseltamivir, and the M2-channel with adamantanes bound. The H1N1 virus was predicted to be susceptible to oseltamivir, with all important interactions with the binding residues being well conserved. In contrast, adamantanes are not predicted to be able to inhibit the M2 function and have completely lost their binding with the M2 residues. This is mainly due to the fact that the M2 transmembrane of the new H1N1 strain contains the S31N mutation which is known to confer resistance to adamantanes. 相似文献
13.
[目的]为了研究2006年从广西病猪肺组织中分离的H1N2亚型猪流感病毒(SIV)A/Swine/Guangxi/13/2006(H1N2)(Sw/Gx/13/06)的遗传学特性和8个基因的来源.[方法]运用RT PCR方法对其全基因进行了克隆并运用分子生物学软件对其基因序列进行了遗传进化分析.[结果]血凝素(HA)、核蛋白(NP)、基质蛋白(M)和非结构蛋白(NS)基因来源于猪古典H1N1亚型流感病毒;神经氨酸酶(NA)和聚合酶蛋白(PB1)基因来源于人的H3N2亚型流感病毒;聚合酶蛋白(PA)和聚合酶蛋白(PB2)基因来自于禽流感病毒.[结论]可见Sw/GX/13/06是一株"人-猪-禽"三源基因重排H1N2亚型SIV且与美国(1999-2001年)和韩国(2002年)分离到该型病毒的有明显的亲缘关系.据我们所知,这是中国首次报道含有禽流感病毒基因片段的重排H1N2 SIV,该病毒是否对养猪业和人类公共卫生健康具有潜在的威胁,有待于进一步研究. 相似文献
14.
CuiLin Xu LiBo Dong Li Xin Yu Lan YongKun Chen LiMei Yang YueLong Shu 《中国科学:生命科学英文版》2009,52(5):407-411
Highly pathogenic influenza A (H5N1) virus causes a widespread poultry deaths worldwide. The first human H5N1 infected case
was reported in Hong Kong Special Administrative Region of China in 1997. Since then, the virus re-emerged in 2003 and continues
to infect people worldwide. Currently, over 400 human infections have been reported in more than 15 countries and mortality
rate is greater than 60%. H5N1 viruses still pose a potential pandemic threat in the future because of the continuing global
spread and evolution. Here, we summarize the epidemiological, clinical and virological characteristics of human H5N1 infection
in China monitored and identified by our national surveillance systems.
Chinese Nature Science Foundation Key Project (Grant No. 30599433), Chinese Basic Science Research Program (973)Key Project
(Grant No. 2005CB523006) 相似文献
15.
【背景】H5N1禽流感病毒可以感染人类导致重症呼吸道感染,致死率高。【目的】研究我中心确认的一例人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015的可能起源及基因组分子特征。【方法】对病人痰液样本中的H5N1病毒进行全基因组测序,使用CLC Genomics Workbench 9.0对序列进行拼接,使用BLAST和MEGA 5.22软件进行同源性比对和各片段分子特征分析。【结果】该株禽流感病毒属于H5亚型的2.3.2.1c家系,其8个片段均与江浙地区禽类中分离的病毒高度同源,未发现有明显的重配。分子特征显示,该病毒血凝素(Hemagglutinin,HA)蛋白裂解位点为PQRERRRR/G,受体结合位点呈现禽类受体特点,但出现D94N、S133A和T188I氨基酸置换增强了病毒对人类受体的亲和性。神经氨酸酶(Neuraminidase,NA)蛋白颈部在49-68位缺失20个氨基酸,非结构蛋白1 (Non-structure protein,NS1)存在P42S置换和80-84位氨基酸的缺失。其他蛋白中也存在多个增强病毒致病力和对人类细胞亲和力的氨基酸突变。对耐药位点分析发现存在对奥司他韦的耐药突变H_274Y,病毒对金刚烷胺仍旧敏感。【结论】人感染高致病性禽流感H5N1病毒A/Nanjing/1/2015属于2.3.2.1c家系,禽类来源,关键位点较保守,但仍出现了多个氨基酸的进化与变异使其更利于感染人类。H5N1禽流感病毒进化活跃,持续动态监测不能放松。 相似文献
16.
Camila Marx Tatiana Sch?ffer Gregianini Fernanda Kieling Moreira Lehmann Vagner Ricardo Lunge Silvia de Carli Bibiana Paula Dambrós Gabriela Luchiari Tumioto Claudete Seadi André Salvador Kazantzi Fonseca Nilo Ikuta 《Memórias do Instituto Oswaldo Cruz》2013,108(3):392-394
The neuraminidase (NA) genes of A(H1N1)pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS) from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y) and the other in 2011 (S247N). This study revealed a low prevalence of resistant viruses (0.8%) with no spread of the resistant mutants throughout RS. 相似文献
17.
In this study, we investigated the in vitro antiviral activity of the mycelia of higher mushrooms against influenza virus type A(serotype H1N1) and herpes simplex virus type 2(HSV-2), strain BH. All 10 investigated mushroom species inhibited the reproduction of influenza virus strain A/FM/1/47(H1N1) in MDCK cells reducing the infectious titer by 2.0–6.0 lg ID50. Four species, Pleurotus ostreatus, Fomes fomentarius, Auriporia aurea, and Trametes versicolor, were also determined to be effective against HSV-2 strain BH in RK-13 cells, with similar levels of inhibition as for influenza. For some of the investigated mushroom species—Pleurotus eryngii, Lyophyllum shimeji, and Flammulina velutipes—this is the first report of an anti-influenza effect. This study also reports the first data on the medicinal properties of A. aurea, including anti-influenza and antiherpetic activities. T. versicolor 353 mycelium was found to have a high therapeutic index(324.67), and may be a promising material for the pharmaceutical industry as an anti-influenza and antiherpetic agent with low toxicity. Mycelia with antiviral activity were obtained in our investigation by bioconversion of agricultural wastes(amaranth flour after CO2 extraction), which would reduce the cost of the final product and solve some ecological problems. 相似文献
18.
Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China 总被引:1,自引:0,他引:1
Hai Yu Peng-Chao Zhang Yan-Jun Zhou Jie Pan Xiao-Xiao Shi Guang-Zhi Tong 《Biochemical and biophysical research communications》2009,386(2):278-283
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority. 相似文献
19.
【背景】1997年香港发生人感染禽流感事件以来,禽流感病毒成为持续威胁人类健康和公共卫生的重要病原体。【目的】对一例人感染新型H10N3禽流感病毒病例开展分子溯源研究。【方法】流感病毒分型检测采用RT-qPCR法,在下一代测序平台上完成病毒基因组测序,序列和系统进化分析采用BLAST和MEGA 6.1等生物信息学软件。【结果】2021年4月从严重呼吸道疾病患者体内分离到一株病毒,经核酸检测和序列分析,结果表明其为H10N3亚型禽流感病毒。从患者居所附近的农贸市场分离到一株基因高度同源的H10N3亚型禽流感病毒。分离株是一种新的基因重配H10N3禽流感病毒,其血凝素hemagglutinin(HA)和神经氨酸酶neuraminidase(NA)组合最早在2019年华东地区的家禽中检测到,6个内部基因来源于近年来中国南方家禽中流行的H9N2病毒。病毒的HA蛋白的裂解位点含有1个碱性氨基酸R,未插入多个碱性氨基酸,理论上不属于高致病性禽流感病毒。HA蛋白受体结合位点228位氨基酸残基由G突变为S,理论上增强了对人SAα2,6受体的亲和力。另外,未发现PB2蛋白E627K突变,但591位氨基酸... 相似文献
20.
Xian Qi Yong-jun Jiao Hao Pan Lun-biao Cui Wei-xing Fan Bao-xu Huang Zhi-yang Shi Hua Wang 《中国病毒学》2009,24(1):52-58
One influenza H3N2 virus, A/swine/Shandong/3/2005 (Sw/SD/3/2005), was isolated from pigs with respiratory disease on a farm in eastern China. Genetic analysis revealed that Sw/SD/3/2005 was a triple-reassortant virus with a PB2 gene from human-like HIN1, NS from classical swine H1NI, and the remaining genes from human-like H3N2 virus. These findings further support the concept that swine can serve as reservoir or mixing vessels of influenza virus strains and maintain genetic and antigenic stability of viruses. Furthermore, we have successfully established a reverse genetics system based on eight plasmids and rescued Sw/SD/3/2005 through cell transfection. HI tests and RT-PCR confirmed that the rescued virus maintained the biological properties of the wild type Sw/SD/3/2005. The successful establishment of the reverse genetics system of Sw/SD/3/2005 will enable us to conduct extensive studies of the molecular evolution of H3N2 influenza viruses in swine. 相似文献