首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Collagen fibrils are present in the extracellular matrix of animal tissue to provide structural scaffolding and mechanical strength. These native collagen fibrils have a characteristic banding periodicity of ~67 nm and are formed in vivo through the hierarchical assembly of Type I collagen monomers, which are 300 nm in length and 1.4 nm in diameter. In vitro, by varying the conditions to which the monomer building blocks are exposed, unique structures ranging in length scales up to 50 microns can be constructed, including not only native type fibrils, but also fibrous long spacing and segmental long spacing collagen. Herein, we present procedures for forming the three different collagen structures from a common commercially available collagen monomer. Using the protocols that we and others have published in the past to make these three types typically lead to mixtures of structures. In particular, unbanded fibrils were commonly found when making native collagen, and native fibrils were often present when making fibrous long spacing collagen. These new procedures have the advantage of producing the desired collagen fibril type almost exclusively. The formation of the desired structures is verified by imaging using an atomic force microscope.  相似文献   

2.
M F Paige  J K Rainey    M C Goh 《Biophysical journal》1998,74(6):3211-3216
Fibrous long spacing collagen (FLS) fibrils are collagen fibrils in which the periodicity is clearly greater than the 67-nm periodicity of native collagen. FLS fibrils were formed in vitro by the addition of alpha1-acid glycoprotein to an acidified solution of monomeric collagen and were imaged with atomic force microscopy. The fibrils formed were typically approximately 150 nm in diameter and had a distinct banding pattern with a 250-nm periodicity. At higher resolution, the mature FLS fibrils showed ultrastructure, both on the bands and in the interband region, which appears as protofibrils aligned along the main fibril axis. The alignment of protofibrils produced grooves along the main fibril, which were 2 nm deep and 20 nm in width. Examination of the tips of FLS fibrils suggests that they grow via the merging of protofibrils to the tip, followed by the entanglement and, ultimately, the tight packing of protofibrils. A comparison is made with native collagen in terms of structure and mechanism of assembly.  相似文献   

3.
Electrospinning of collagen nanofibers   总被引:3,自引:0,他引:3  
Electrospinning is a fabrication process that uses an electric field to control the deposition of polymer fibers onto a target substrate. This electrostatic processing strategy can be used to fabricate fibrous polymer mats composed of fiber diameters ranging from several microns down to 100 nm or less. In this study, we describe how electrospinning can be adapted to produce tissue-engineering scaffolds composed of collagen nanofibers. Optimizing conditions for calfskin type I collagen produced a matrix composed of 100 nm fibers that exhibited the 67 nm banding pattern that is characteristic of native collagen. The structural properties of electrospun collagen varied with the tissue of origin (type I from skin vs type I from placenta), the isotype (type I vs type III), and the concentration of the collagen solution used to spin the fibers. Electrospinning is a rapid and efficient process that can be used to selectively deposit polymers in a random fashion or along a predetermined and defined axis. Toward that end, our experiments demonstrate that it is possible to tailor subtle mechanical properties into a matrix by controlling fiber orientation. The inherent properties of the electrospinning process make it possible to fabricate complex, and seamless, three-dimensional shapes. Electrospun collagen promotes cell growth and the penetration of cells into the engineered matrix. The structural, material, and biological properties of electrospun collagen suggest that this material may represent a nearly ideal tissue engineering scaffold.  相似文献   

4.
Previously, a type IV collagen fraction was isolated from chicken gizzard and further fractionated into three components called F1, F2 and F3 [Mayne, R. and Zettergren, J.G. (1980) Biochemistry, 19, 4065-4072]. F1 and F2 were consistently isolated in a 2:1 proportion, and the existence of a small native fragment of structure (F1)2F2 was proposed. In the present series of experiments, a type IV collagen fraction was isolated from the chicken kidney and shown to consist almost entirely of F1 and F2 which were again present in a 2:1 proportion. Identical one-dimensional peptide maps for F1 and F2 from both sources were obtained by polyacrylamide gel electrophoresis of peptides obtained after cleavage with cyanogen bromide or Staphylococcus aureus V8 protease. The denaturation temperature of a preparation containing F1 and F2 in native form was determined by optical rotatory dispersion and a single melting curve was observed with a melting temperature of 33 degrees C. This result provides further supportive evidence that F1 and F2 exist as a native fragment (F1)2F2. Antibodies were prepared in rabbits against a type IV collagen fraction isolated from chicken gizzard, and immunofluorescent staining of a wide variety of basement membranes was demonstrated. Experiments were performed in which various type IV collagen fractions were observed in the electron microscope after rotary shadowing. The lengths of (F1)2F2 and F3 were 147 nm and 174 nm respectively, the sum of these lengths (321 nm) corresponding closely to the length of the major triple-helical domain of type IV collagen (326-328 nm). A specific cleavage site was located at a distance of 215 nm from the 7-S domain which, together with the length of (F1)2F2, gives a total length of 362 nm. This value corresponds closely to the maximum length of the arms which originate from the 7-S domain (355 nm) when type IV collagen was solubilized with a low concentration of pepsin. The results suggest that (a) type IV collagen isolated from the chicken gizzard is closely related, if not identical, to type IV collagen isolated from other tissues; (b) there is a single type IV collagen molecule of chain organization[alpha 1(IV)]2 alpha2(IV); (c) the order of the pepsin-resistant fragments within a type IV molecule is 7S-F3-(F1)2F2.  相似文献   

5.
The mechanism of formation of fibrillar collagen with a banding periodicity much greater than the 67 nm of native collagen, i.e. the so-called fibrous long spacing (FLS) collagen, has been speculated upon, but has not been previously studied experimentally from a detailed structural perspective. In vitro, such fibrils, with banding periodicity of approximately 270 nm, may be produced by dialysis of an acidic solution of type I collagen and alpha(1)-acid glycoprotein against deionized water. FLS collagen assembly was investigated by visualization of assembly intermediates that were formed during the course of dialysis using atomic force microscopy. Below pH 4, thin, curly nonbanded fibrils were formed. When the dialysis solution reached approximately pH 4, thin, filamentous structures that showed protrusions spaced at approximately 270 nm were seen. As the pH increased, these protofibrils appeared to associate loosely into larger fibrils with clear approximately 270 nm banding which increased in diameter and compactness, such that by approximately pH 4.6, mature FLS collagen fibrils begin to be observed with increasing frequency. These results suggest that there are aspects of a stepwise process in the formation of FLS collagen, and that the banding pattern arises quite early and very specifically in this process. It is proposed that typical 4D-period staggered microfibril subunits assemble laterally with minimal stagger between adjacent fibrils. alpha(1)-Acid glycoprotein presumably promotes this otherwise abnormal lateral assembly over native-type self-assembly. Cocoon-like fibrils, which are hundreds of nanometers in diameter and 10-20 microm in length, were found to coexist with mature FLS fibrils.  相似文献   

6.
Fibronectin and collagens are major constituents of the cell matrix of fibroblasts. Fibronectin is a 220,000 dalton glycoprotein that mediates a variety of adhesive functions of cells examined in vitro. Fibronectin is secreted in a soluble form and interacts with collagen to form extracellular filaments. Fibronectin and procollage type I were localized using the peroxidase anti-peroxidase method. Under standard culture conditions, fibronectin and procollagen were localized to non-periodic 10 nm extracellular fibrils, the cell membrane and plasma membrane vesicles. Ascorbate treatment of cells leads to a new larger fibril with a diameter of approximately 40 nm. Antibodies to fibronectin and procollagen I react to these native collagen fibrils with an axial periodicity of approximately 70 nm. Fibronectin is clearly associated with native collagen fibrils produced by ascorbate treated cells and there is an asymetric distribution or segregation of fibronectin on these collagen fibrils with a 70 nm axial repeat.  相似文献   

7.
We have recently observed that aged and/or hypertrophying chondrocytes in culture synthesize a small collagen molecule termed short-chain (SC) collagen. Our previous biochemical studies have suggested that this molecule is slightly less than half the length of "typical" interstitial collagens and should have both a helical, collagenous domain and a nonhelical, globular one. In the present study we have examined the structure of this molecule by electron microscopy of rotary-shadowed preparations and segment-long-spacing crystallites. Rotary-shadowed SC collagen molecules appear as rods with a length of 132 nm and a knob at one end. Preparations of native molecules that have been treated by limited pepsin digestion show only the rod-like domain. These results are consistent with the rod-like domain having the molecular structure of a collagen helix, which is refractory to pepsin digestion, and the knob representing a globular, nonhelical domain. Segment-long-spacing crystallites of pepsin-digested molecules confirm the length of the helical domain to be 132 nm. Positively stained crystallites show a banding pattern different from other collagens.  相似文献   

8.
Several bipyridinium, tetrapyridinium and hexapyridinium quaternary salts have been found to be potent inhibitors of putrescine uptake into B16 melanoma cells which had previously been treated with difluoromethylornithine. In general, the potency of inhibitors increased as the number of quaternary centres increased. A relationship between the distance apart of the positively charged nitrogen atoms and the potency of the salts as inhibitors of uptake has been established by comparison with a number of diaminoalkanes. It was found that an inter-nitrogen distance of 0.6-0.7 nm or 1.0-1.1 nm was optimal for high activity. This finding is significant in determining structural features of the polyamine transport system.  相似文献   

9.
Neutron diffraction studies of collagen in fully mineralized bone   总被引:6,自引:0,他引:6  
Neutron diffraction measurements have been made of the equatorial and meridional spacings of collagen in fully mineralized mature bovine bone and demineralized bone collagen, in both wet and dry conditions. The collagen equatorial spacing in wet mineralized bovine bone is 1.24 nm, substantially lower than the 1.53 nm value observed in wet demineralized bovine bone collagen. Corresponding spacings for dry bone and demineralized bone collagen are 1.16 nm and 1.12 nm, respectively. The collagen meridional long spacing in mineralized bovine bone is 63.6 nm wet and 63.4 nm dry. These data indicate that collagen in fully mineralized bovine bone is considerably more closely packed than had been assumed previously, with a packing density similar to that of the relatively crystalline collagens such as wet rat tail tendon. The data also suggest that less space is available for mineral within the collagen fibrils in bovine bone than had previously been assumed, and that the major portion of the mineral in this bone must be located outside the fibrils.  相似文献   

10.
The frequently observed instability of neutral salt solutions of native collagen extracted from various sources and partially purified by standard procedures has been studied by disc electrophoresis in polyacrylamide gel and by electron microscopic examination of segment long spacing crystallites. The phenomenon has revealed time and temperature dependency, pH optima near neutrality, and inhibition by sodium EDTA and serummin addition, collagen breakdown has been found to be quantitatively related to the state of aggregation of the substrate, being more marked in reconstituted collagen gels than in collagen in solutionma typical pattern of animal collagenase degradation of native collagen into two fragments designated as TC-A and TC-B has been observed under certain conditions. It is concluded that the degradation of native collagen in neutral salt solution is due to a specific collagenase, and that this enzyme probably remains bound to collagen throughout the process of extraction and partial purification. Experiments with gelatin suggest that, in addition to collagenase, a nonspecific proteolytic activity may also be present in collagen preparations.  相似文献   

11.
Native small intestinal submucosa (SIS) sheet was prepared by removal of inside and outside layer of porcine jejunum. The acid treated SIS sheet was also prepared by dipping of native SIS sheet in acetic acid solution. The native or acid treated SIS sheets exhibited elastic and soft property on touch. The surface of native SIS sheet appears to be covered with thin and long collagen fibers entangled into networks. The fibers and fibrils at acid treated SIS sheet disappeared due to the acidic erosion of collagen fiber. The water uptake of acid treated SIS sheet (1300%) was higher than that of the native SIS sheet (500%). The cell morphology and proliferation of human bone marrow stem cells (hBMSCs) on SIS sheet was examined. The hBMSCs on the SIS sheet showed a flattened morphology, while cells in the polyglycolic acid (PGA) mesh showed rounded cell morphology. The cell viability on native or acid treated SIS sheet was higher than that of PGA mesh. The hBMSCs in both native and acid treated SIS sheet were grown at a similar rate. The number of adhering hBMSCs increased with incubation time. Thus, we could confirm that native or acid treated SIS sheet could act as a potential scaffold to enhance the hBMSCs proliferation by providing probably natural environments.  相似文献   

12.
The frequently observed instability of neutral salt solutions of native collagen extracted from various sources and partially purified by standard procedures has been studied by disc electrophoresis in polyacrylamide gel and by electron microscopic examination of segment long spacing crystallites. The phenomenon has revealed time and temperature dependency, pH optima near neutrality, and inhibition by sodium EDTA and serum. In addition, collagen breakdown has been found to be quantitatively related to the state of aggregation of the substrate, being more marked in reconstituted collagen gels than in collagen in solution. A typical pattern of animal collagenase degradation of native collagen into two fragments designated as TCA and TCB has been observed under certain conditions. It is concluded that the degradation of native collagen in neutral salt solution is due to a specific collagenase, and that this enzyme probably remains bound to collagen throughout the process of extraction and partial purification. Experiments with gelatin suggest that, in addition to collagenase, a nonspecific proteolytic activity may also be present in collagen preparations.  相似文献   

13.
Manufacturers of vaccines and other biologicals are under increasing pressure from regulatory agencies to develop production methods that are completely animal-component-free. In order to comply with this demand, alternative cell culture substrates to those now on the market, primarily collagen or gelatin, must be found. In this paper, we have tested a number of possible substitutes including recombinant collagen, a 100-kDa recombinant gelatin fragment and a peptide derived from a cell-binding region of type I collagen. The small 15-amino acid peptide did not support attachment of human fibroblasts in monolayer culture. The 100-kDa gelatin fragment supported cell attachment in monolayer culture, but was significantly less active than intact porcine gelatin. Recombinant type I collagen was as successful in promoting cell attachment as native collagen, and both were more effective than porcine gelatin. Based on these data, dextran microspheres were treated with the same attachment proteins—porcine gelatin, native collagen, or recombinant collagen. The same trends were observed as in monolayer culture. Concentrations of the recombinant collagen (as well as native collagen) supported cell attachment on dextran microspheres at concentrations as low as 0.01 μg/cm2. Treatment of the dextran with a low level of polyethylenimine, a cationic moiety, further enhanced attachment when used in conjunction with the low concentration of recombinant collagen. Where there was increased cell attachment, increased proliferation followed. We are confident, based on these findings, that a fully recombinant substitute could replace gelatin in current microcarrier preparations without losing the cell growth benefits provided by the native protein.  相似文献   

14.
Cross-links in tendon collagen are essential for the biomechanical strength of healthy tissue. The nature and position of these cross-links has long been a subject for conjecture. We have approached this problem in a non-destructive manner, by studying neutron diffraction from collagen fibrils that have been specifically deuterated by reduction at keto-amine and Schiff base groups with sodium borodeuteride (NaB2H4). The intensities of the first 23 meridional reflections were recorded for both native and reduced tendons. These data were used to calculate the neutron-scattering density profile of the 67 nm (D) repeat of type I collagen fibrils in rat tail tendon. This approach not only succeeds in determining the location of the cross-linkage sites with respect to the fibril structure, as projected onto the fibre axis, but also presents a novel form of the isomorphous derivative solution to the phase problem.  相似文献   

15.
To examine the role of humans in the non‐native fish introductions, we measured the frequency of occurrence and density of non‐native fishes in ponds (Epping Forest, Essex, England) that had been restored (drained of water and voided of fish or treated with rotenone) on a known date and into which no piscivorous or non‐native fishes had subsequently been stocked intentionally. For each pond, the period of time since pond restoration, pond area, distance to nearest residential housing, distance to nearest footpath, distance to nearest water body or stream, and the proportion of pond vegetated were measured. The occurrence of both non‐native and unexpected native fish species was non‐random, and the number of ornamental varieties was found to increase as pond distance from the nearest road decreased. Variety richness of each of three categories of fish (non‐native, goldfish Carassius auratus and native) was significantly correlated with at least two of the following variables: distance from nearest road, nearest footpath and nearest pond. The rate of non‐native fish introductions (adjusted variety richness per year) could also be estimated from pond distance to the nearest road, being about 3.5 ornamental varieties introduced per year in ponds adjacent to roads, but the rate appears to be much greater in ponds that had recently (<1.5 years) undergone restoration. Implications for conservation and management, as well as the potential role of societal issues such as recreational activities, cultural and religious practices, are discussed.  相似文献   

16.
17.
18.
The influence of alpha1-acid glycoprotein on the formation of fibrous long spacing fibers of collagen has been investigated. It was observed that addition of the glycoprotein to dialyzed collagen solutions caused a significant decrease in the intensity of the circular dichroic spectrum of collagen. This phenomenon, which displays an optimum with respect to glycoprotein, is consistent with previous observations of fibrous long spacing fiber formation. Changes in viscosity of collagen initially dissolved in acetic acid were monitored during dialysis. It was found that a significant increase in viscosity must occur during dialysis of collagen before fibrous long spacing formation could take place. This increase in viscosity can be related directly to removal of acetic acid from the collagen solution. Removal of all sialyl residues from the alpha1-acid glycoprotein with neuraminidase prevents fibrous long spacing formation while removal of up to 35% of the sialyl residues has no effect on the interaction of glycoprotein with collagen. Amino acid composition and radioactivity studies suggest that 45-55% of the insoluble fibrous long spacing fibers is glycoprotein. In contrast to native collagen fibers, reduced fibrous long spacing fibers do not contain histidinohydroxymerodesmosine or hydroxylysinonorleucine. Instead, they contain significant quantities of allysine aldol and epsilon-hydroxynorleucine.  相似文献   

19.
Tsai SW  Liu RL  Hsu FY  Chen CC 《Biopolymers》2006,83(4):381-388
Collagen, a critical part of the extra-cellular matrix of tissues, is a popular native material for building scaffolding for tissue-engineering applications. To mimic the structural and functional profiles of materials found in the native extra-cellular matrix, numerous efforts have been made toward developing a novel scaffold combining collagen with other biomacromolecules. All of these works have been focused on improving the mechanical or biochemical properties of the collagen-based matrix. Unfortunately, most of these studies have failed to consider the nanostructure of collagen in the complex matrix. The aim of our study was to investigate the aggregation pattern of collagen after addition of polysaccharides with positive or negative charge, the dose-response relationship, and the effect on reconstitution kinetics. Generally, collagen self-assembles into fibrils with a diameter of around 95 nm but, in the presence of various polysaccharides in varying amounts, collagen self-assembles into different shapes with larger diameters compared with collagen alone. Although the morphology and diameter of the collagen fibrils varies with reconstitution conditions, the D-periods of the fibrils all remained the same regardless of the species or concentration of polysaccharides. The kinetics of fibril formation was determined from turbidity-time curves. All turbidity curves demonstrated that polysaccharides only alter the lag time and time frame of reconstitution, but have no significant effect on the mechanism of reconstitution. Together our data indicate that the presence of biomacromolecules can alter the kinetics and the 3D fibril ultrastructure of assembled collagen and that the consequent structural changes may affect cellular responses in medical applications.  相似文献   

20.
The effects of a number of related glycols and substituted glycols on the renaturation kinetics of acid-soluble calf-skin collagen have been investigated. Optical rotation recovery was monitored at a fixed temperature in the presence of perturbants and the initial rates of reaction were determined. The effects of perturbants on stability of the native protein are compared with their action in the renaturing systems. The relationship between initial recovery rates and fixed-time [alpha]-values is shown to be dependent upon the renaturation temperature. The influence of perturbant concentration on recovery rates is discussed in terms of present theories of the mechanism of collagen renaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号