首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first report demonstrating a relationship between apoptosis induction and changes of intracellular redox potential in the growth-inhibitory effects of high concentrations of beta-carotene in a tumor cell line. beta-Carotene inhibited the growth of human WiDr colon adenocarcinoma cells in a dose- and time-dependent manner, induced apoptosis, and blocked Bcl-2 expression. These effects were accompanied by an enhanced production of intracellular reactive oxygen species (ROS). The addition of the antioxidant alpha-tocopherol blocked both the pro-oxidant and the growth-inhibitory effects of the carotenoid. These findings suggest that beta-carotene may act as an inductor of apoptosis by its pro-oxidant properties.  相似文献   

2.
The purpose of this study was to examine whether the dietary components n-6 and n-3 polyunsaturated fatty acids (PUFAs) may potentiate the effect of photodynamic therapy (PDT) in human cancer cell lines by enhancing the lipid peroxidation. The effects of the porphyrin precursor 5-aminolevulinic acid (5-ALA) and light (320 < lambda < 440 nm, 33 W m(-2)), with or without docosahexaenoic acid (DHA) or arachidonic acid (AA), were tested in the colon carcinoma cell lines SW480 and WiDr, the glioblastoma cell line A-172 and the lung adenocarcinoma cell line A-427. The production of endogenous protoporphyrin IX (PpIX) varied substantially between the cell lines and was approximately 4-fold higher in WiDr as compared with SW480. Cell killing by 5-ALA-PDT also varied between the cell lines, but without clear correlation with PpIX levels. Treatment with DHA or AA (10 or 70 microM, 48 or 72 h) in combination with 5-ALA-PDT (1 or 2 mM) enhanced the cytotoxic effect in A-172 and A-427 cells, but not in SW480 and WiDr cells. While 5-ALA-PDT alone increased the lipid peroxidation in A-172 and WiDr cells only, 5-ALA-PDT plus PUFAs increased the lipid peroxidation substantially in all four cell lines. Interestingly, alpha-tocopherol (50 microM, 48 h) strongly reduced lipid peroxidation after all treatments in all cell lines, while cytotoxicity was only reduced substantially in A-427 cells. This demonstrates that induction of lipid peroxidation is not a general mechanism responsible for the cytotoxicity of 5-ALA-PDT, although it may be important in cell lines with an inherent sensitivity to lipid peroxidation products. Thus, the mechanisms of cell growth inhibition/cell killing by PDT are complex and cell specific.  相似文献   

3.
Several studies have demonstrated that certain essential fatty acids present a specific cytotoxicity for tumor cells. However, no investigation of this type has been performed on human colon cancer cells to date. This study investigated the effect of gamma-linolenic acid (GLA), eicosapentaenoic acid (EPA) and prostaglandin (PG) E1 on the proliferation and metabolism of three human colon cancer cell lines: HT 29, HRT 18, and CACO 2. GLA, EPA and PGE1 all inhibited the proliferation of the three cell lines, but with a decreasing gradient of sensitivity: HRT 18 > HT 29 > CACO 2, and with different IC50 values. PGE1 was markedly less effective than the other two. GLA and EPA increased lipid peroxidation and membrane fluidity in a dose-dependent manner. The presence of indomethacin did not modify the effects of GLA and EPA. In addition, PGE1 had little effect on membrane fluidity and lipid peroxidation. The antitumoral effect thus does not appear to be mediated by PGE1. Addition of vitamin E decreased the effects of GLA and EPA, which supports the hypothesis of direct action by these fatty acids. In conclusion, while EPA and GLA have an antitumoral effect in vitro, their effect on primary cultures of normal human colon cells must be investigated to determine whether this effect is specific to tumoral cells, as has been observed for other cell types.  相似文献   

4.
Effects of fatty acids on the growth of Caco-2 cells   总被引:14,自引:0,他引:14  
Epidemiological studies suggest that polyunsaturated fatty acids may protect against colorectal neoplasia. In order to explore this observation, cell proliferation and viability, lipid composition, membrane fluidity, and lipid peroxidation were measured in Caco-2 cells after 48h incubation with various fatty acids. Saturated and monounsaturated fatty acids incorporated less well in the membranes than polyunsaturated fatty acids (PUFAs). All of the PUFAs tested had an inhibitory effect on cell proliferation/viability whereas the saturated and monounsaturated fatty acids did not. Addition of palmitic acid had no significant effect on membrane fluidity whereas unsaturated fatty acids increased membrane fluidity in a dose-dependent manner. PUFAs strongly increased tumor cell lipid peroxidation in a dose-dependent manner. Saturated and monounsaturated fatty acids increased lipid peroxidation in this cell line only at high concentration. Preincubation of Caco-2 cells with vitamin E prevented the inhibition of proliferation/viability, the elevation of the MDA concentration and the increased membrane fluidity induced by PUFAs. Our data indicate that PUFAs are potent inhibitors of the growth of colon cancer cells in vitro.  相似文献   

5.
The essential fatty acid deficiency (EFAD) is a metabolic condition related to cancer development. We studied the effect of eicosapentaenoic acid (EPA, 20:5 n-3) and eicosatrienoic acid (ETA, 20:3 n-9), an essential fatty acid (EFA) and non-EFA respectively, on tumour cells parameters linked to tumour progression and metastases. Human tumour cell lines (T-24 from urothelium, MCF-7 from breast and HRT-18 from colon) were used. EPA showed an anti-proliferative effect on the three lines. ETA showed the following effects: in T-24, the lipid peroxidation was decreased and E-cadherin was undetectable; in MCF-7, increased E-cadherin expression enhanced the lipid peroxidation and decreased cell proliferation; on HRT-18, the E-cadherin expression and lipid peroxidation diminished, whereas cell proliferation was increased. In conclusion, EFA (20:5 n-3) exhibited beneficial effects, whereas unusual ETA showed an opposite effect on some tumour parameters. The possible riskiness of EFA-deprivation, along with the potential of EFA as natural nutrapeutic products for human tumour prevention and treatment, makes EFA worthy of further consideration.  相似文献   

6.
The aim of this study was to verify the hypothesis that beta-carotene may prevent 7-ketocholesterol (7-KC)-induced apoptosis in human macrophages. Therefore, THP-1 macrophages were exposed to 7-KC (5-50 microM) alone and in combination with beta-carotene (0.25-1 microM). 7-KC inhibited the growth of macrophages in a dose- and a time-dependent manner by inducing an arrest of cell cycle progression in the G0/G1 phase and apoptosis. Concomitantly, p53, p21, and Bax expressions were increased by 7-KC, whereas the levels of AKT, Bcl-2, and Bcl-xL were decreased. beta-Carotene prevented the growth-inhibitory effects of 7-KC in a dose- and time-dependent manner as well as the effects of 7-KC on the expression of cell cycle- and apoptosis-related proteins. 7-KC also enhanced reactive oxygen species (ROS) production through an increased expression of NAD(P)H oxidase (NOX-4). The effects of 7-KC were counteracted by the addition of the NAD(P)H oxidase inhibitor DPI or by cotransfection of siNOX-4 mRNA. beta-Carotene prevented 7-KC-induced increase in ROS production and in NOX-4 expression, as well as the phosphorylation of p38, JNK, and ERK1/2 induced by 7-KC. These data suggest a possible antiatherogenic role of beta-carotene through the prevention of 7-KC toxicity in human macrophages.  相似文献   

7.
Rat liver microsomal membranes were exposed to either beta-nicotinamide adenine dinucleotide phosphate (NADPH), adenosine 5'-diphosphate (ADP), and Fe+3 or to azocompounds, and the antioxidant activities of beta-carotene and alpha-tocopherol were studied. Lipid peroxidation was monitored either by malondialdehyde (MDA) formation in the thiobarbituric acid assay at 535 nm or by hydroperoxide formation at 234 nm, after high-pressure liquid chromatography (HPLC) separation of phospholipid hydroperoxides. The radical initiators, water-soluble 2,2'-azobis(2-amidinopropane) (AAPH) and lipid-soluble 2,2'-azobis(2,4-dimethylvaleronitrile (AMVN), when thermally decomposed at 37 degrees C under air, produced a constant rate of lipid peroxidation in microsomes and lag times inversely related to their concentrations. Using 25 mM AAPH, beta-carotene suppressed lipid peroxidation at a concentration of 50 nmol/mg protein; using 24 mM AMVN, an inhibition of MDA formation was observed at a concentration of only 5 nmol/mg protein. Inhibition by beta-carotene did not produce a clearly defined lag phase. During AAPH-induced lipid peroxidation, beta-carotene was consumed linearly, and high levels of the antioxidant were still present at the end of 45 min of incubation. Using NADPH/ADP/Fe+3, protection by beta-carotene was observed at 10 nmol/mg protein. alpha-Tocopherol effectively suppressed both MDA and hydroperoxide formation in a dose-dependent manner when either NADPH/ADP/Fe+3 or azocompounds were used. These effects were observed at very low concentrations of the added alpha-tocopherol, ranging from 2 to 3 nmol/mg protein. When the lag times were measurable (AAPH and AMVN), they were directly proportional to the concentration of alpha-tocopherol and revealed the presence of endogenous antioxidants in the microsomal membranes. Different temporal relationships between the loss of alpha-tocopherol and lipid peroxidation were observed in relation to the prooxidant used. A substantial depletion of about 70% of endogenous alpha-tocopherol preceded the propagation phase when induced by the azocompounds, while only 20% of antioxidant disappeared at the beginning of the peroxidation when induced by NADPH/ADP/Fe+3. Although our results show that both beta-carotene and alpha-tocopherol suppress the peroxidation of microsomal membranes, their antioxidant efficacy is influenced by several factors, including the type of radical initiator involved and the site and rate of radical production.  相似文献   

8.
This study has examined whether elevated glucose can induce lipid peroxidation and contribute to the inhibition of cell growth in human kidney proximal tubule(HPT) cells. HPT cells were cultured in media containing glucose concentrations of 8 mM (control), 25 mM, and 50 mM. Lipid peroxidation was assessed by the thiobarbituric acid reactivity and cell growth was assessed by 3H-thymidine uptake. Results show decreased (59%, p < 0.01) growth of HPT cells cultured in 50 mM glucose. Cells cultured in 50 mM mannitol did not show any growth inhibition, suggesting that the decreased cell growth associated with glucose is not due to osmolarity changes. There was an increase (108%, p < 0.02) in lipid peroxidation in cells cultured with high levels of glucose (50 mM) compared with controls and cells cultured with 50 mM mannitol. To examine if membrane lipid peroxidation or malondialdehyde (MDA, an end product of lipid peroxidation) has any role in the inhibition of cell growth, we examined the effect of tertiary butylhydroperoxide (TBH, known to cause lipid peroxidation and generate MDA) on the growth of HPT cells. TBH decreased cell growth (49, 17 and 3% of controls at 0.1, 0.25, and 0.5 [mole TBH/ml medium). Similarly, a marked reduction in the growth was observed with exogenous MDA (72, 69 and 34% of controls at 0.1, 0.25, and 0.5 mole MDA/ml medium). This suggests that elevated glucose can induce membrane lipid peroxidation and accumulation of MDA, which in turn can inhibit cellular growth and contribute to the altered structure and function of HPT cells in diabetes.  相似文献   

9.
Rat liver microsomal lipids in hexane solution were exposed to the lipid-soluble radical initiator, azobis-isobutyronitrile (AIBN), and the antioxidant activities of alpha-tocopherol and beta-carotene have been compared. Lipid peroxidation was monitored both by conjugated diene formation at 233 nm, and by malondialdehyde (MDA) formation in the thiobarbituric acid assay at 535 nm. Diene formation was continuous for at least 120 min in the presence of 85 micrograms/ml lipid and 4 mM AIBN. Both alpha-tocopherol and beta-carotene acted as chain-breaking antioxidants, suppressing lipid peroxidation and producing an induction period at concentrations as low as 0.5 and 8 microM, respectively. When both of these lipid-soluble antioxidants were present together, the oxidation was strongly suppressed and the induction period was the sum of the individual antioxidants, alpha-Tocopherol and beta-carotene also inhibited MDA generation. In the presence of 170 micrograms/ml lipid and 8 mM AIBN, beta-carotene exhibited an IC50 of 1.1 microM and inhibited completely at 15 microM. Using beta-carotene, an induction period was observed, although much less pronounced than with alpha-tocopherol. Furthermore, beta-carotene inhibited MDA production in a concentration-dependent manner and exhibited an IC50 of 50 microM. In addition, added beta-carotene delayed the radical-initiated destruction of the endogenous alpha-tocopherol and gamma-tocopherol in this system.  相似文献   

10.
This study compared the growth inhibitory effects of pure conjugated linoleic acid (CLA) isomers [cis(c)9,c11-CLA, c9,trans(t)11-CLA, t9,t11-CLA, and t10,c12-CLA] on human colon cancer cell lines (Caco-2, HT-29 and DLD-1). When Caco-2 cells were incubated up to 72 h with 200 μM, each isomer, even in the presence of 10% fetal bovine serum (FBS), cell proliferation was inhibited by all CLA isomers in a time-dependent manner. The strongest inhibitory effect was shown by t9,t11-CLA, followed by t10,c12-CLA, c9,c11-CLA and c9,t11-CLA, respectively. The strongest effect of t9,t11-CLA was also observed in other colon cancer cell lines (HT-29 and DLD-1). The order of the inhibitory effect of CLA isomer was confirmed in the presence of 1% FBS. CLA isomers supplemented in the culture medium were readily incorporated into the cellular lipids of Caco-2 and changed their fatty acid composition. The CLA contents in cellular lipids were 26.2±2.7% for t9,t11-CLA, 35.9±0.3% for c9,t11-CLA and 46.3±0.8% for t10,c12-CLA, respectively. DNA fragmentation was clearly recognized in Caco-2 cells treated with t9,t11-CLA. This apoptotic effect of t9,t11-CLA was dose- and time-dependent. DNA fragmentation was also induced by 9c,11t-CLA and t10,c12-CLA. However, fragmentation levels with both isomers were much lower than that with t9,t11-CLA. t9t11-CLA treatment of Caco-2 cells decreased Bcl-2 levels in association with apoptosis, whereas Bax levels remained unchanged. These results suggest that decreased expression of Bcl-2 by t9t11-CLA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death, apoptosis.  相似文献   

11.
Lipid peroxidation induced by cyclophosphamide   总被引:2,自引:0,他引:2  
Intraperitoneal administration of a single dose of cyclophosphamide (CP) to rats was found to produce hepatic glutathione depletion and to enhance NADPH-mediated lipid peroxidation in the 15,000 x g supernatant fraction of the liver. These effects were associated with CP in a dose- and a time-dependent manner. The data suggest that the glutathione depletion is, at least in part, responsible for the enhancement in lipid peroxidation induced by CP.  相似文献   

12.
Ultrasonic radiation produced a dose-dependent linear increase in lipid peroxidation in the liposomal membrane as reflected in the measurements of conjugated dienes, lipid hydroperoxides, and malondialdehydes (MDA). Production of MDA was confirmed by spectrophotometric and spectrofluorometric methods including the detection of excitation (360 nm) and emission (435 nm) maxima characteristic of the MDA-glycine adduct formed after addition of glycine in the system. Ultrasound of frequencies 20 kHz (used for laboratory purposes) and 3.5 MHz (used for clinical purposes) produced MDA in an identical manner. Ultrasound-induced lipid peroxidation was enhanced synergistically by 2.5 X 10(2) microM ascorbic acid but inhibited significantly by 10(4) microM ascorbic acid. Ultrasound-induced production of MDA could not be inhibited to any significant degree by superoxide dismutase, histidine, dimethylfuran, or beta-carotene but was very significantly inhibited by cholesterol (93%), butylated hydroxytoluene (88%), alpha-tocopherol (85%), sodium benzoate (80%), dimethyl sulfoxide (80%), sodium formate (64%), and EDTA (64%). The scavenger studies indicated the functional role of OH radicals in the initiation of ultrasound-induced lipid peroxidation.  相似文献   

13.
14.
Docosahexaenoic acid (DHA) is an indispensable component of cell membranes with high requirements during pregnancy. DHA supplementation is thought to enhance oxidative stress because of increased likelihood of lipid peroxidation. We estimated the oxidative stress levels in two groups of pregnant women who received daily supply of required vitamins with (n = 23) or without (n = 23) 500 mg of DHA and 150 mg of eicosapentaenoic acid (EPA) from 20 weeks of gestation to the time of delivery. Urinary excretions of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative DNA damage and of malondialdehyde (MDA), a marker of lipid peroxidation, were measured at 20, 30 weeks and at the time of delivery. Urinary MDA excretion remained unchanged throughout the study period in both groups. Urinary 8-OHdG excretion at delivery was significantly higher than at 20 and 30 weeks (p < 0.05), but there were no group differences at the three time points. There were no differences between the two groups in plasma a-tocopherol levels. We conclude that under the conditions studied, a daily supplementation of 500 mg DHA and 150 mg EPA with vitamins to pregnant women did not enhance lipid peroxidation or oxidative DNA damage.  相似文献   

15.
beta-Carotene, alpha-tocopherol, and ascorbic acid were tested for their ability to inhibit, enhance, or react synergistically with O(2) (15, 150, 760 torr) and, 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) or 1,1'-azobis (cyclohexane-carbonitrile) (ACCN) in isolated rat liver microsomes. beta-Carotene did not protect against lipid peroxidation, i.e., malondialdehyde (MDA) formation, in microsomal samples incubated at 37 degrees C with aqueous soluble AAPH at all added beta-carotene concentrations and oxygen tensions. More MDA (16%, p < 0.001) was produced at 15 torr of O(2,) and 160 nmol/mg protein of beta-carotene compared to respective vehicle control. Individually, alpha-tocopherol and ascorbic acid exhibited antioxidant protection (ascorbic acid &z.Gt; alpha-tocopherol); however, a mixture of both compounds was no more protective than ascorbic acid alone. beta-Carotene demonstrated a concentration-dependent antioxidant affect at 15 torr O(2) (p < 0.01); but a prooxidant effect at higher O(2) at 150 and 760 torr (>57%, p < 0.001) by lipid-soluble ACCN. alpha-Tocopherol exhibited concentration-dependent inhibitory effects on microsomal MDA formation at all oxygen tensions, but was most effective under 150 torr. Ascorbic acid demonstrated a concentration-dependent antioxidant effect only at 150 torr. ACCN-induced lipid peroxidation was no greater for the combination of the three compounds than ascorbic acid added alone. Thus, antioxidant or prooxidant activities for beta-carotene, alpha-tocopherol, and ascorbic acid in microsomal suspensions are related to O(2) tension, solubility, antioxidant concentrations and are governed by complex interactions. Differences between AAPH- and ACCN-induced lipid peroxidation are related to differences in lipid solubility.  相似文献   

16.
Carbon nanotubes (CNTs) are gradually used in various areas including drug delivery, nanomedicine, biosensors, and electronics. The current study aimed to explore the DNA damage and cytotoxicity due to single-walled carbon nanotubes (SWCNTs) on human hepatocarcinoma cells (HepG2). Cellular proliferative assay showed the SWCNTs to exhibit a significant cell death in a dose- and time-dependent manner. However, SWCNTs induced significant intracellular reactive oxygen species (ROS) production and elevated lipid peroxidation, catalase, and superoxide dismutase in the HepG2 cells. SWCNTs also induced significant decrease in GSH and increase caspase-3 activity in HepG2 cells. DNA fragmentation analysis using the alkaline single-cell gel electrophoresis showed that the SWCNTs cause genotoxicity in a dose- and time-dependent manner. Therefore, the study points towards the capability of the SWCNTs to induce oxidative stress resulting cytotoxicity and genomic instability. This study warrants more careful assessment of SWCNTs before their industrial applications.  相似文献   

17.
Accumulating evidence suggests that obesity and enhanced inflammatory reactions are predisposing conditions for developing colon cancer. Obesity is associated with high levels of circulating leptin. Leptin is an adipocytokine that is secreted by adipose tissue and modulates immune response and inflammation. Lipid droplets (LD) are organelles involved in lipid metabolism and production of inflammatory mediators, and increased numbers of LD were observed in human colon cancer. Leptin induces the formation of LD in macrophages in a PI3K/mTOR pathway-dependent manner. Moreover, the mTOR is a serine/threonine kinase that plays a key role in cellular growth and is frequently altered in tumors. We therefore investigated the role of leptin in the modulation of mTOR pathway and regulation of lipid metabolism and inflammatory phenotype in intestinal epithelial cells (IEC-6 cells). We show that leptin promotes a dose- and time-dependent enhancement of LD formation. The biogenesis of LD was accompanied by enhanced CXCL1/CINC-1, CCL2/MCP-1 and TGF-β production and increased COX-2 expression in these cells. We demonstrated that leptin-induced increased phosphorylation of STAT3 and AKT and a dose and time-dependent mTORC activation with enhanced phosphorilation of the downstream protein P70S6K protein. Pre-treatment with rapamycin significantly inhibited leptin effects in LD formation, COX-2 and TGF-β production in IEC-6 cells. Moreover, leptin was able to stimulate the proliferation of epithelial cells on a mTOR-dependent manner. We conclude that leptin regulates lipid metabolism, cytokine production and proliferation of intestinal cells through a mechanism largely dependent on activation of the mTOR pathway, thus suggesting that leptin-induced mTOR activation may contribute to the obesity-related enhanced susceptibility to colon carcinoma.  相似文献   

18.
Brevinin-2R is an antimicrobial peptide which has been isolated from the skin of the frog Rana ridibunda. The purpose of the present study was to examine the cellular cytotoxicity and inflammatory effects of brevinin-2R (B2R) on human lung epithelial adenocarcinoma cell line A549. The effects of different concentrations (5, 10, and 20 μg/ml) of B2R on the expression levels of pro-inflammatory cytokines such as IL-1β, and IL-8 in A549 cells were evaluated by semi-quantitative RT-PCR and real-time PCR assays in a dose- and time-dependent manner. Based on the results of MTT assay, B2R showed a moderate cytotoxicity effect in a dose-dependent manner up to 20 % suppression of the cell growth. Moreover, gene expression results demonstrated that B2R up-regulates the IL-1β and IL-8 expression levels in A549 cells in a dose- and time-dependent manner. Our results suggested that brevinin-2R antimicrobial peptide has potentially a regulatory effect on triggering the inflammatory processes.  相似文献   

19.
To further understand potential mechanisms underlying the protective effects of eicosapentanoic acid (EPA) against atherosclerosis, J774 macrophages were used to explore cellular responses to growth in the presence of PUFA in vitro. Clonogenic assays indicated that 15 microg/ml of EPA killed over 90% of J774 populations. Docosapentaenoic acid (DPA) was more cytotoxic than either EPA or docosahexaenoic acid (DHA). EPA was shown to be elongated to DPA. Cytotoxicity induced by EPA was not inhibited by the presence of alpha-tocopherol (a-toc) in the medium. Immunological screening for caspase enzymes and microscopic examination indicated that apoptosis was not the major cause of cell death. Proliferation assays demonstrated that total cell numbers of EPA-treated cells were not significantly different to control cells. Increasing does of EPA were correlated with increasing levels of intracellular malondialdehyde (MDA). These observations suggest that EPA may influence the growth parameters of macrophages whilst inducing moderately elevated levels of oxidative stress.  相似文献   

20.
Binding of annexin V to membrane products of lipid peroxidation   总被引:3,自引:0,他引:3  
There is increasing evidence that endogenously generated aldehydes formed as a result of lipid peroxidation are involved in the pathophysiological effects associated with oxidative stress in cells and tissues. Malondialdehyde (MDA), a major product of lipid peroxidation, can modify amines present on the cell surface and thereby introduce negative charges that can affect the interfacial ionic layer. We show that lipid peroxidation of RBC generates MDA adducts that, similar to phosphatidylserine (PS), bind annexin V in a Ca(2+)-dependent manner. Like PS, these adducts also promote the "PS-dependent" prothrombinase assays, albeit to lower levels. These results indicate that annexin V binding cannot be used as an exclusive indicator of cell surface PS and raise the possibility that some phenomenon attributed to PS may, in fact, also involve aldehyde-lipid adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号