首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

2.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

3.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

4.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

5.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

6.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

7.
The attachment of poly(ribitol phosphate) to lipoteichoic acid carrier   总被引:1,自引:0,他引:1  
2-Acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (21) and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(L-leucyl-L-threonyl-N2-tosyl-L-lysine p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine (22), 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(glycine ethyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-1-oyl-(phenylalanine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine were synthesized by condensation of 2-acetamido-3,4,6-tri-O-acetyl-1-N-[N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine with the appropriate protected amino acids and tri- and tetra-peptides. The amino acid sequences of 21 and 22 correspond to the protected amino acid sequences 34–37 and 34–38 of ribonuclease B that are adjacent to the carbohydrate-protein linkage.  相似文献   

8.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

9.
The synthesis of the trisaccharides O-β-d-galactopyranosyl-(1→3)-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→6)-d-galactopyranose (15) and O-β-d-galactopyranosyl-(1→3)-O-(2-acetamido-2-deoxy-α-d-galactopyranosyl)-(1→6)-d-glucopyranose (27) is described and the synthesis of α-d-glycosides by reaction of 3,4,6-tri-O-acetyl-2-azido-2-deoxy-β-d-galactopyranosyl chloride with highly reactive hydroxyl groups is discussed. The trisaccharide 27 was coupled with serum albumin by formation of an imine intermediate and reduced to an amine, to yield a synthetic T-antigen. A similar coupling of 15 was unsuccessful.  相似文献   

10.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

11.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

12.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

13.
The reaction of p-nitrophenyl 2,3-O-isopropylidene-α-d-mannopyranoside and 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1-d]-2-oxazoline gave a crystalline, 6-O-substituted disaccharide derivative which, on de-isopropylidenation followed by saponification, produced the disaccharide p-nitrophenyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside. Synthesis of methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside was also accomplished by a similar reaction-sequence. The structures of these disaccharides have been established by 13C-n.m.r. spectroscopy.  相似文献   

14.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

15.
The synthesis is described of the glycotripeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L--seryl-L-nitroarginyl-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine, 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-seryl-L-nitroarginyl-L-aspart-1-oyl-(1-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucine methyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine, and of the glycopentapeptide and glycohexapeptide derivatives 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-threonyl-Nε-tosyl-L-lysine-(p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glycopyranosylamine and 2-acetamido-3,4,6-tri-O-acetyl-N-[N-(benzyloxycarbonyl)-L-nitroarginyl-L-aspart-1-oyl-(L-leucyl-L-threonyl-Nε-tosyl-L-lysyl-L-aspartic 1,4-di-p-nitrobenzyl ester)-4-oyl]-2-deoxy-β-D-glucopyranosylamine.  相似文献   

16.
4-Methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside, 2-acetamido-4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2-deoxy-β-D-glucopyranoside (di-N-acetyl-β-chitobioside), and O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside (tri-N-acetyl-β-chitotrioside) were obtained in good yield from the corresponding peracetylated glycosyl chlorides by condensation with the sodium salt of 4-methylumbelliferone in N,N-dimethylformamide. The trisaccharide glycoside is hydrolyzed by lysozyme and is, therefore, a convenient substrate for this enzyme; the 4-methylumbelliferone produced can be determined by the increase of the fluorescence intensity at 442 nm. The intensity of the fluorescence of 4-methylumbelliferyl tri-N-acetyl-β-chitotrioside is enhanced upon binding with lysozyme without modification of the position of the absorption maximum. The binding constant and the rate of hydrolysis of the trisaccharide glycoside by lysozyme are higher than those obtained with p-nitrophenyl tri-N-acetyl-β-chitotrioside.  相似文献   

17.
2-Methyl-(2-acetamido-3,4,6-tri-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,2-methyl-(2-acetamido-6-O-acetyl-3,4-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline,and 2-methyl-(2-acetamido-4-O-acetyl-3,6-di-O-benzyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-d]-2-oxazoline were synthesized from the allyl 2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-D-glucopyranosides, and from the 3,4-di-O-benzyl or 3,6-di-O-benzyl analogs, respectively, both the α and β anomer being used in each case. The preparation of allyl 2-acetamido-3,4,6-tri-O-benzyl- and 3,6-di-O-benzyl-2-deoxy-β-D-glucopyranoside is also described. Treatment of the tri-O-benzyl oxazoline with dibenzyl phosphate gave a pentabenzylglycosyl phosphate, from which all the benzyl groups were removed by catalytic hydrogenation, giving 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate. The corresponding β anomer was not detectable. Treatment of the 3,4-, or 3,6-, di-O-benzyl oxazoline with allyl 2-acetamido-3,4-di-O-benzyl-α-D-glucopyranoside readily gave disaccharide products from which the protecting groups were removed, to give the (1→6)-linked isomer of di-N-acetylchitobiose. Under both acidic and basic conditions, this isomer was less stable than the (1→4)-linked compound.Attempts to employ the 3,6-di-O-benzyl oxazoline for the formation of (1→4)-linked disaccharides, by treatment with either anomer of allyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-D-glucopyranoside, were not very successful, presumably owing to hindrance by the bulky benzyl groups.  相似文献   

18.
Starting from 2-acetamido-4,6-di-O-acetyl-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-β-D-glucopyranosyluronate)-α-D-glucopyranose (20), a crystalline intermediate prepared by a conventional sequence of reactions, the total synthesis of N-acetyl-hyalobiosyluronic dolichyl diphosphate was achieved. One of the key steps involved the transformation of the disaccharide 20 into the methyloxazoline 26, which was then converted into the stable, crystalline disaccharide phosphate derivative in ~30% yield. The methyloxazoline 26 was directly prepared from the corresponding methyl α-glycoside by acetolysis. Similarly, the allyl α-glycoside was transformed into 26.  相似文献   

19.
The stereoselective glycosylation of a model alcohol (cyclohexanol) by derivatives of 2-azido-2-deoxy-d-galactopyranose was studied under various conditions. 2-Azido-3,4,6-tri-O-benzyl-2-deoxy-β-d-galactopyranosyl chloride (9) was found to be the most efficient glycosylating agent for the synthesis of oligosaccharides containing 2-acetamido-2-deoxy-α-d-galactopyranose residues, and gave a tetrasaccharide, which is a determinant of the blood-group A (Type 1), i.e., O-α-l-fucopyranosyl-(1→2)-[O-2-acetamido-2-deoxy-α-d- galactopyranosyl-(1→3)]-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose, and its trisaccharide fragment, O-2-acetamido-2-deoxy-α-d-galactopyranosyl-(1→3)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-d-glucose. In the course of this synthesis, the determinant trisaccharide related to the H blood-group, i.e., O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→3)-2-acetamido-2- deoxy-d-glucose, was also obtained.  相似文献   

20.
Condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside (2) gave an α-d-linked disaccharide, further transformed by removal of the carbonyl and benzylidene groups and acetylation into the previously reported benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranoside. Condensation of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-d-glucopyranose or 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-glucopyranosyl bromide with 2 gave benzyl 2-acetamido-3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside. Removal of the acetyl group at O-2, followed by oxidation with acetic anhydride-dimethyl sulfoxide, gave the β-d-arabino-hexosid-2-ulose 14. Reduction with sodium borohydride, and removal of the protective groups, gave 2-acetamido-2-deoxy-3-O-β-d-mannopyranosyl-d-glucose, which was characterized as the heptaacetate. The anomeric configuration of the glycosidic linkage was ascertained by comparison with the α-d-linked analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号