首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostacyclin synthase (PGIS), which catalyzes the conversion of prostaglandin (PG) H(2) to prostacyclin (PGI(2)), is a member of the cytochrome P-450 (P450) superfamily, CYP8A1. To study the enzymatic and protein characteristics of human PGIS, the enzyme was overexpressed in Spodoptera frugiperda 21 (Sf21) cells using the baculovirus expression system. PGIS was expressed in the microsomes of the infected Sf21 cells after culture in 5 microg/ml hematin-supplemented medium for 72 h. The holoenzyme was isolated from the solubilized microsomal fraction by calcium phosphate gel absorption and purified to homogeneity by DEAE-Sepharose and hydroxyapatite column chromatography. The K(m) and V(max) values of the purified human PGIS for PGH(2) were 30 microM and 15 micromol/min/mg of protein at 24 degrees C, respectively. The optical absorption and EPR spectra of the enzyme revealed the characteristics of a low-spin form of P450 in the oxidized state. The carbon monoxide-reduced difference spectrum, however, exhibited a peak at 418 nm rather than 450 nm. The addition of a PGH(2) analogue, U46619, to the enzyme produced an oxygen-ligand type of the difference spectrum with maximum absorption at 407 nm and minimum absorption at 430 nm. Treatment with another PGH(2) analogue, U44069, produced a peak at 387 nm and a trough at 432 nm in the spectrum (Type I), while treatment with tranylcypromine, a PGIS inhibitor, produced a peak at 434 nm and a trough at 412 nm (Type II). A Cys441His mutant of the enzyme possessed no heme-binding ability or enzyme activity. Thus, we succeeded in obtaining a sufficient amount of the purified recombinant human PGIS from infected insect cells for spectral analyses that has high specific activity and the characteristics of a P450, indicating substrate specificity.  相似文献   

2.
6-Pyruvoyl tetrahydropterin synthase, the enzyme that catalyses the conversion of 7,8-dihydroneopterin triphosphate to 6-pyruvoyl tetrahydropterin, was purified 3,330-fold from human pituitary gland with an overall recovery of 30%. The native enzyme has a molecular mass of 68 kD and consists of four identical subunits of 16.5 kD. The pH optimum of the enzyme in Tris/HCl buffer is 7.5. The enzyme is dependent on Mg2+ and NADPH and has a Michaelis-Menten constant of 10 microM for its natural substrate, 7,8-dihydroneopterin triphosphate. The isoelectric point of the human enzyme is 4.3-4.6. The human pituitary gland enzyme is heat instable in contrast to the enzymes from human, rat and salmon liver, and Drosophila head. The amino acid composition showed remarkably high content of acidic amino acids Asp and Glu. The N-terminus was found to be blocked.  相似文献   

3.
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the first step in the conversion of 7,8-dihydroneopterin triphosphate to tetrahydrobiopterin, was purified approximately 140,000-fold to apparent homogeneity from human liver. The molecular mass of the enzyme is estimated to be 83 kDa. 7,8-Dihydroneopterin triphosphate was a substrate of the enzyme in the presence of Mg2+, and the pH optimum of the reaction was 7.5 in Tris HCl buffer. The Km value for 7,8-dihydroneopterin triphosphate was 10 microM. The product of this enzymatic reaction was the presumed intermediate 6-pyruvoyl-tetrahydropterin. This latter compound was converted to tetrahydrobiopterin in the presence of NADPH and partially purified sepiapterin reductase from human liver. The conditions and the effect of N-acetylserotonin on this reaction, and on the formation of the intermediates 6-(1'-hydroxy-2'-oxopropyl)-tetrahydropterin and 6-(1' oxo-2'-hydroxypropyl)-tetrahydropterin have been studied.  相似文献   

4.
Growth conditions for Azospirillum brasilense Sp6 were devised for maximal expression of glutamate synthase. The enzyme levels were largely affected by the type and concentration of the nitrogen source. A 10-fold increase in the synthesis of the enzyme was observed at a limiting concentration of ammonia. The enzyme was purified to homogeneity by a procedure which was fairly rapid and allowed a good recovery of enzyme (30%). Azospirillum glutamate synthase is a complex iron-sulfur flavoprotein with a stoichiometry of 1 flavin adenine dinucleotide:1 flavin mononucleotide:8 Fe:8 S per protomer with a molecular weight of 185,000. The protomer is composed of two dissimilar subunits with molecular weights of 135,000 and 50,000. Kinetic parameters were determined. Km values for NADPH, 2-oxoglutarate, and L-glutamine were 6.25, 29, and 450 microM, respectively. The optimum pH was about 7.5. Complete reduction of the enzyme under anaerobic conditions was obtained either by NADPH (in the presence of a regenerating system) or dithionite or by photochemical reduction (in the presence of EDTA and 5-deazariboflavin). No stable long-wavelength intermediates were observed.  相似文献   

5.
Purification and characterization of caffeine synthase from tea leaves.   总被引:17,自引:0,他引:17  
Caffeine synthase (CS), the S-adenosylmethionine-dependent N-methyltransferase involved in the last two steps of caffeine biosynthesis, was extracted from young tea (Camellia sinensis) leaves; the CS was purified 520-fold to apparent homogeneity and a final specific activity of 5.7 nkat mg-1 protein by ammonium sulfate fractionation and hydroxyapatite, anion-exchange, adenosine-agarose, and gel-filtration chromatography. The native enzyme was monomeric with an apparent molecular mass of 61 kD as estimated by gel-filtration chromatography and 41 kD as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme displayed a sharp pH optimum of 8.5. The final preparation exhibited 3- and 1-N-methyltransferase activity with a broad substrate specificity, showing high activity toward paraxanthine, 7-methylxanthine, and theobromine and low activity with 3-methylxanthine and 1-methylxanthine. However, the enzyme had no 7-N-methyltransferase activity toward xanthosine and xanthosine 5'-monophosphate. The Km values of CS for paraxanthine, theobromine, 7-methylxanthine, and S-adenosylmethionine were 24, 186, 344, and 21 microM, respectively. The possible role and regulation of CS in purine alkaloid biosynthesis in tea leaves are discussed. The 20-amino acid N-terminal sequence for CS showed little homology with other methyltransferases.  相似文献   

6.
Catalytically active Pneumocystis carinii thymidylate synthase is expressed to the extent of about 4% of the soluble protein in Escherichia coli chi 2913 harboring plasmid pUETS-1.8 (U. Edman, J. C. Edman, B. Lundgren, and D. V. Santi, Proc. Natl. Acad. Sci. USA 86, 6503-6507, 1989). Ion-exchange, affinity, hydrophobic, and reactive dye agarose chromatography steps were explored to devise a large-scale purification protocol for P. carinii thymidylate synthase. Sequential DE52, Q-Sepharose, phenyl-Sepharose, and Cibacron Blue F3GA chromatography yielded enzyme that was homogeneous by SDS-PAGE in a yield of over 50%. The sequence of the first 10 amino acid residues of the purified protein was in accord with that predicted from the DNA sequence. Isoelectric focusing gave a pI of 6.2. Kinetic analysis of the purified enzyme revealed that the Km values were 4.7 +/- 1.3 microM for dUMP and 15.7 +/- 4.3 microM for 5,10-methylenetetrahydrofolate, similar to those of many other thymidylate synthases; the kcat of the most active preparation was 0.8 s-1. The enzyme is stable for at least 2 months when stored at -80 degrees C in the presence of 40% glycerol, Tris-HCl, and thiol.  相似文献   

7.
The side-chain asymmetry of physiological porphyrins is produced by the cooperative action of hydroxymethylbilane synthase and uroporphyrinogen (uro'gen) III synthase. Although the role of uro'gen III synthase is essential for the chemistry of porphyrin biosynthesis, many aspects, structural as well as mechanical, of uro'gen III synthase have yet to be studied. We report here an expression system in Escherichia coli and a purification procedure for human uro'gen III synthase. The enzyme in the lysate was unstable, but we found that glycerol prevents the activity loss in the lysate. The purified enzyme showed remarkable thermostability, particularly when kept in phosphate buffer containing DTT or EDTA, indicating that the enzyme activity may depend on its oxidation state. Examination of the relationship between the number of Cys residues that are accessible to 5,5'-dithiobis(2-nitrobenzoic acid) and the remaining activity during heat inactivation showed that a particular Cys residue is involved in activity loss. From the crystal structure of human uro'gen III synthase [Mathews et al. (2001) EMBO J. 20, 5832-5839], this Cys residue was considered to be Cys73, which is buried deep inside the enzyme, suggesting that Cys73 of human uro'gen III synthase plays an important role in enzyme activity.  相似文献   

8.
Mitochondrial citrate synthase was purified from leaves of Pisum sativum L. cv Progress 9. A three step purification was employed using ATP-Sepharose affinity chromatography which resulted in a 600-fold enrichment. Enzyme activity was assayed spectrophotometrically during greening of etiolated leaves under constant white light illumination. An increase (1.4 fold) in citrate synthase activity was observed in response to light. Immunoblot analysis of the same samples indicated a constant steady state level of citrate synthase on a per milligram protein basis. These investigations provide supportive evidence for the ability of this trichloroacetic acid cycle enzyme to be active in photosynthesizing tissue.  相似文献   

9.
Human pancreatic fatty acid ethyl ester synthase has been isolated and purified 1200-fold to homogeneity, and its activities, binding properties, and N-terminal amino acid sequence indicate that it is a member of the lipase family. This 52-kDa monomeric protein is present at 0.6-1.2 mg/g of pancreas, and it catalyzes the synthesis and hydrolysis of ethyl oleate at rates of 2400 nmol mg-1 h-1 and 30 nmol mg-1 h-1, respectively. Kinetic analyses reveal a pronounced substrate specificity for unsaturated octadecanoic fatty acids, with ethyl ester synthetic rates of 2400 nmol mg-1 h-1 (linoleic), 2400 nmol mg-1 h-1 (oleic), 400 nmol mg-1 h-1 (arachidonic), 300 nmol mg-1 h-1 (palmitic), and 100 nmol mg-1 h-1 (stearic). Like cholesterol esterase, the enzyme binds to immobilized heparin, and this property was critical for its purification to homogeneity. Its N-terminal amino acid sequence is virtually identical with that reported for human triglyceride lipase, NH2-X-Glu-Val-Cys-5Tyr-Glu-Arg-Leu-Gly-10Cys-Phe-Ser-Asp- Asp-15Ser-Pro-Trp-Ser-Gly-20Ile, and it differs by only four residues from that reported for porcine pancreatic lipase. The synthase purified here also cleaves triglycerides, hydrolyzing triolein at a rate of 30 nmol mg-1 h-1, and this activity is stimulated by colipase and inhibited by sodium chloride. Conversely, commercially available porcine triglyceride lipase exhibits fatty acid ethyl ester synthase activity (1530 nmol mg-1 h-1) and hydrolyzes triolein at a rate of 23 nmol mg-1 h-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Human transcortin was purified to apparent homogeneity from plasma by a two-step procedure involving affinity and hydroxyapatite chromatography. The affinity gel incorporated denatured bovine serum albumin as the spacer and cortisol hemisuccinate as the ligand. Although isolated transcortin showed a propensity for spontaneous polymerization according to a geometric progression (1, 3, 9) only one band was observed on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Cortisol-binding activity of the isolated protein gave an apparent association constant of 2.5 X 10(8) M-1 at 4 degree C in equilibrium dialysis. Isoelectric focusing of purified native transcortin showed six discrete bands, five between pH 3.75 and 4.15 and another, possibly desialylated, at pH 6.15. Desialylated transcortin also gave six bands on isoelectric focusing, with pI values ranging from 4.90 to 6.30.  相似文献   

11.
Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.  相似文献   

12.
Prostaglandin D2 11-ketoreductase activity of bovine liver was purified 340-fold to apparent homogeneity. The purified enzyme was a monomeric protein with a molecular weight of about 36 kDa, and had a broad substrate specificity for porstaglandins D1, D2, D3, and H2, and various carbonyl compounds (e.g., phenanthrenequinone and nitrobenzaldehyde, etc.). Prostaglandin D2 was reduced to 9 alpha,11 beta-prostaglandin F2 and prostaglandin H2 to prostaglandin F2 alpha with NADPH as a cofactor. Phenanthrenequinone competitively inhibited the reduction of prostaglandin D2, while it did not inhibit that of prostaglandin H2. Moreover, chloride ion stimulated the reduction of prostaglandin D2 and carbonyl compounds, while it had no effect on that of prostaglandin H2. Besides, the enzyme was inhibited by flavonoids (e.g., quercetin) that inhibit carbonyl reductase, but was not inhibited by barbital and sorbinil, which are the inhibitors of aldehyde and aldose reductases, respectively. These results indicate that the bovine liver enzyme has two different active sites, i.e., one for prostaglandin D2 and carbonyl compounds and the other for prostaglandin H2, and appears to be a kind of carbonyl reductase like bovine lung prostaglandin F synthase (Watanabe, K., Yoshida, R., Shimizu, T., and Hayaishi, O., 1985, J. Biol. Chem. 260, 7035-7041). However, the bovine liver enzyme was different from prostaglandin F synthase of bovine lung with regard to the Km value for prostaglandin D2 (10 microM for the liver enzyme and 120 microM for the lung enzyme), the sensitivity to chloride ion (threefold greater activation for the liver enzyme) and the inhibition by CuSO4 and HgCl2 (two orders of magnitude more resistant in the case of the liver enzyme). These results suggest that the bovine liver enzyme is a subtype of bovine lung prostaglandin F synthase.  相似文献   

13.
Dimethylallyl tryptophan synthase (DMAT synthase) catalyzes the alkylation of L-tryptophan by dimethylallyl diphosphate to form 4-(gamma,gamma-dimethylallyl)-L-tryptophan. The enzyme from mycelia of Claviceps purpurea was purified approximately 125-fold to apparent homogeneity by chromatography on n-butyl Sepharose, Q Sepharose, phenyl Sepharose, and Protein Pak as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Analysis by gel filtration chromatography and SDS-PAGE indicated that DMAT synthase is an alpha 2 dimer with a molecular mass of 105 kDa. The purified enzyme was active in metal-free buffer containing EDTA. However, activity was enhanced upon addition of divalent calcium or magnesium ions to the buffer. Values for KM and Vmax were determined in the metal-free EDTA buffer (KMDMAPP, 14 microM; KML-tryptophan, 40 microM; Vmax, 215 nmol min-1 mg-1), 4 mM CaCl2 (KMDMAPP, 8.0 microM; KML-tryptophan, 17 microM; Vmax, 504 nmol min-1 mg-1), and 4 mM MgCl2 (KMDMAPP, 8.0 microM; KML-tryptophan, 12 microM; Vmax, 455 nmol min-1 mg-1). The product was isolated and characterized by 1H NMR, uv, and FAB mass spectrometry.  相似文献   

14.
A simple three-step method was established for the purification of NAD(P)H dehydrogenase (quinone) ('DT-diaphorase', EC 1.6.99.2) from rat liver by affinity chromatography with a recovery of above 50%. The final enzyme preparation was purified about 750-fold and was electrophoretically homogeneous. Gel filtration showed that the enzyme had a mol.wt. of about 55 000, and one molecule of FAD was found per 55 000 mol.wt. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave a mol.wt. of about 27 000. Two N-terminal amino acids, asparagine/aspartic acid and glutamine/glutamic acid, were found in about equal yield, suggesting the presence of two non-identical polypeptide chains in the enzyme. NAD(P)H dehydrogenase was selectively removed by this affinity-chromatographic method from a microsomal carboxylation system. The system, which was solubilized by detergent and is dependent on vitamin K (2-methyl-3-phytyl-1,4-naphthaquinone or analogues with other side chains), lost its activity on the removal of the enzyme. The activity can be completely restored to the system by adding purified cytoplasmic NAD(P)H dehydrogenase or by using the quinol form of vitamin K1 (2-methyl-3-phytyl-1,4-naphthaquinol).  相似文献   

15.
Cobyrinic acid a,c-diamide synthase, which catalyzes the conversion of cobyrinic acid to cobyrinic acid a,c-diamide via the intermediate formation of cobyrinic acid c-monoamide, was purified 155-fold to homogeneity from extracts of a recombinant strain of Pseudomonas denitrificans by high-performance liquid chromatography. The enzyme has an apparent molecular weight of 86,000 and consists of two identical subunits of Mr 45,000, as estimated by gel electrophoresis under denaturing conditions. Stepwise Edman degradation provided the N-terminal sequence of the first 15 amino acids. Glutamine was shown to be the preferred amino group donor (Km = 20.3 microM), but it could be replaced by ammonia (Km = 12 mM). The reaction was ATP dependent and exhibited a broad optimum pH around 7.3. Km values for (CN,aq)cobyrinic acid, (aq)2cobyrinic acid, and (CN,aq)cobyrinic acid c-monoamide were 160, greater than or equal to 250, and 71 microM, respectively. Hydrogenobyrinic acid and hydrogenobyrinic acid c-monoamide were shown to be much better substrates, with Km values of 0.41 and 0.21 microM, respectively.  相似文献   

16.
Dihydrodipicolinate synthase (EC 4.2.1.52), the first enzyme unique to lysine biosynthesis in bacteria and higher plants, has been purified to homogeneity from etiolated pea (Pisum sativum) seedlings using a combination of conventional and affinity chromatographic steps. This is the first report on a homogeneous preparation of native dihydrodipicolinate synthase from a plant source. The pea dihydrodipicolinate synthase has an apparent molecular weight of 127,000 and is composed of three identical subunits of 43,000 as determined by gel filtration and cross-linking experiments. The trimeric quaternary structure resembles the trimeric structure of other aldolases, such as 2-keto-3-deoxy-6-phosphogluconic acid aldolase, which catalyze similar aldol condensations. The amino acid compositions of dihydrodipicolinate synthase from pea and Escherichia coli are similar, the most significant difference concerns the methionine content: dihydrodipicolinate synthase from pea contains 22 moles of methionine residue per mole of native protein, contrary to the E. coli enzyme, which does not contain this amino acid at all. Dihydrodipicolinate synthase from pea is highly specific for the substrates pyruvate and l-aspartate-β-semialdehyde; it follows Michaelis-Menten kinetics for both substrates. The pyruvate and l-aspartate-β-semialdehyde have Michaelis constant values of 1.70 and 0.40 millimolar, respectively. l-Lysine, S-(2-aminoethyl)-l-cysteine, and l-α-(2-aminoethoxyvinyl)glycine are strong allosteric inhibitors of the enzyme with 50% inhibitory values of 20, 160, and 155 millimolar, respectively. The inhibition by l-lysine and l-α-(2-aminoethoxyvinyl)glycine is noncompetitive towards l-aspartate-β-semialdehyde, whereas S-(2-aminoethyl)-l-cysteine inhibits dihydrodipicolinate synthase competitively with respect to l-aspartate-β-semialdehyde. Furthermore, the addition of (2R,3S,6S)-2,6-diamino-3-hydroxy-heptandioic acid (1.2 millimolar) and (2S,6R/S)-2,6-diamino-6-phosphono-hexanic acid (1.2 millimolar) activates dihydrodipicolinate synthase from pea by a factor of 1.4 and 1.2, respectively. This is the first reported activation process found for dihydrodipicolinate synthase.  相似文献   

17.
Recombinant mouse thymidylate synthase (TS) expressed at high levels in Escherichia coli was purified to homogeneity in greater than 70% yield by a rapid three-step procedure. Both 0.1% Triton X-100 and 10% glycerol were required to stabilize the enzyme whose activity remained unchanged after 1 month when stored at -20 degrees C. Thermal inactivation of the enzyme was a first-order process at 37 degrees C, with t1/2 values of 6.9, 15.6 and 3.0 min at pH 5.5, 7.0 and 8.5, respectively. The presence of saturating levels of dUMP at pH 8.5 increased the t1/2 of inactivation of 38 min. The pH profile for enzyme activity showed a narrow optimum region centered at pH 7.0, which was mirrored by the shape of the Km, dUMP/Vmax plot. The pH dependence of Kd for the covalent inhibitory ternary complex of enzyme, 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate exhibited a broad minimum between pH 5.5 and 8.5, and ranged between 3.1, 0.8 and 1.1 nM at pH 5.5, 7.0 and 8.5, respectively. The UV/VIS spectrum of the native enzyme exhibited a maximum at 280 nm (epsilon = 98,200 M-1 cm-1), while that of the inhibitory ternary complex showed an additional maximum at 320 nm. The 19F-NMR spectrum of the mouse enzyme:FdUMP binary complex revealed two new resonances at -2.8 and -34.8 ppm. The most deshielded resonance represented the noncovalent binary complex while the other resonance was assigned to the nucleotide covalently bound to the enzyme. The alteration of nucleotide binding equilibria produced by addition of H4 folate was exemplified by both an increase in intensity and a 5 ppm deshielding of the resonance attributed to the covalent FdUMP-enzyme complex. Addition of formaldehyde to the latter mixture produced the covalent ternary complex which resulted in the collapse of the resonances at -2.8 and -39.5 ppm and the appearance of a new resonance at -12.4 ppm.  相似文献   

18.
A Dutt  W Dowhan 《Biochemistry》1985,24(5):1073-1079
A CDP-diacylglycerol-dependent phosphatidylserine synthase was solubilized from Bacillus licheniformis membranes and purified to near homogeneity. The purification procedure consisted of CDP-diacylglycerol-Sepharose affinity chromatography followed by substrate elution from blue dextran-Sepharose. The purified preparation showed a single band with an apparent relative molecular mass of 53 000 daltons when subjected to sodium dodecyl sulfate--polyacrylamide gel electrophoresis. Proteolytic digestion of the enzyme yielded a smaller (41 000 daltons) active form. The preparation was free of any phosphatidylglycerophosphate synthase, phosphatidylserine decarboxylase, CDP-diacylglycerol hydrolase, and phosphatidylserine hydrolase activities. The utilization of substrates and the formation of products occurred with the expected stoichiometry. Radioisotopic exchange patterns between related substrate and product pairs suggest a sequential Bi-Bi reaction as opposed to the ping-pong mechanism exhibited by the well-studied phosphatidylserine synthase of Escherichia coli [Larson, T. J., & Dowhan, W. (1976) Biochemistry 15, 5212-5218]. The B. licheniformis enzyme was also found to be markedly dissimilar to the E. coli enzyme with regard to association with detergent micelles, affinity for ribosomes, and antigenicity.  相似文献   

19.
Cystathionine β-synthase has been isolated from human liver in two enzymically active forms. Both enzymes, α and β possess a molecular weight of 250,000 and are dependent upon pyridoxal phosphate as a cofactor.  相似文献   

20.
Citrate synthase was purified to homogeneity from a Gram-positive bacterium (Bacillus megaterium) for the first time. The Mr of the native enzyme was determined to be 84 000 (S.E.M. +/- 5000). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel filtration in guanidinium chloride revealed a single protein species of Mr 40 300 (S.E.M. +/- 4400), indicating a dimeric enzyme. This dimeric structure was confirmed by cross-linking the native enzyme with dimethyl suberimidate and with glutaraldehyde, followed by electrophoretic analysis. The enzyme follows Michaelis-Menten kinetics with respect to both substrates, acetyl-CoA and oxaloacetate, and is sensitive to non-specific inhibition by a range of adenine nucleotides. In both molecular and catalytic properties the citrate synthase closely resembles the enzyme from eukaryotic sources and contrasts markedly with the larger, hexameric, enzyme from Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号