首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are ubiquitous human pathogens. They share with other herpesviruses the ability to establish lifelong latent infection of the host. Periodic reactivation from latency is responsible for most of the clinical disease burden of HSV infection. This review focuses on what we have learned from molecular studies in model systems of HSV latency, and the implications these findings have for treating recurrent HSV disease.  相似文献   

3.
Herpes simplex virus (HSV) 1 has adapted to the human host through two modes of infection, the acute-transient infection that may cause diseases (such as encephalitis) and the latent state, which is a source for recurrent infection and disease. While much information has been gathered on the cellular and molecular concomitants of establishment and maintenance of HSV-1 latent state, the biological basis of viral reactivation is still unclear. Despite their obvious differences, HSV-1 and the bacterial temperate virus, the bacteriophage lambda, shares four distinct features that may help understand the viral latency phenomenon: (i) two modes of life cycle and a decision point to choose either latency (HSV-1) and lysogeny (bacteriophage lambda), or active replication, that results in cell destruction, (ii) establishment of lysogeny/latency of the respective virus is associated with protection from cell death, (iii) immunity/resistance to super-infection, (iv) agents that trigger mammalian and bacterial cell death also induce reactivation of both HSV-1 and lambda bacteriophage. Thus, despite their differences, these two viruses might display analogous mechanism(s) of reactivation. Based on clinical and experimental data, we propose in this hypothesis that while HSV-1 latency, like bacteriophage lambda lysogeny, is associated with protection from cell death and restriction to super-infection, viral reactivation from the latent state is triggered by exogenous stress signals that interfere with cellular viability and may eventually lead to cell death.  相似文献   

4.
5.
6.
Primary sympathetic neuronal cultures were maintained for up to 5 weeks after inoculation with herpes simplex virus (HSV) without evidence of viral infection. Treatment with acyclovir for the first 7 days after viral inoculation prevented lytic infections in 100% of the cultures and resulted in viral latency in 100% of the cultures; reactivation occurred as the result of nerve growth factor (NGF) deprivation. Treatment of the cultures with several different inhibitors of viral DNA polymerase (acyclovir, aphidicolin, and phosphonoacetic acid) for 7 days after viral inoculation did not prevent the establishment of latency, which suggests that viral DNA replication was not required. During the latent phase of the infection, viral antigens were not detected with HSV-specific immunohistochemistry. However, 24 h after NGF deprivation, viral antigens were detected in essentially all of the neurons, indicating that the majority of neurons harbored latent HSV. The establishment of latency was not strain or type specific since latency was established with HSV type 2 and four strains of HSV type 1 and reactivation occurred in response to NGF deprivation.  相似文献   

7.
Herpes simplex virus latency and the immune response   总被引:3,自引:0,他引:3  
Following infection, herpes simplex virus establishes latency in the nervous system and recurrences of lytic replication occur periodically. Molecular events which may determine how virus enters latency, how it is maintained and what occurs during reactivation have been investigated. The role of the immune response in limiting infection of the nervous system, influencing the latent state and removing virus from peripheral sites following reactivation has also been studied.  相似文献   

8.
A neonatal rat dorsal root ganglion-derived neuronal culture system has been utilized to study herpes simplex virus (HSV) latency establishment, maintenance, and reactivation. We present our initial characterization of viral gene expression in neurons following infection with replication-defective HSV recombinants carrying beta-galactosidase and/or green fluorescent protein reporter genes under the control of lytic cycle- or latency-associated promoters. In this system lytic virus reporter promoter activity was detected in up to 58% of neurons 24 h after infection. Lytic cycle reporter promoters were shut down over time, and long-term survival of neurons harboring latent virus genomes was demonstrated. Latency-associated promoter-driven reporter gene expression was detected in neurons from early times postinfection and was stably maintained in up to 83% of neurons for at least 3 weeks. In latently infected cultures, silent lytic cycle promoters could be activated in up to 53% of neurons by nerve growth factor withdrawal or through inhibition of histone deacetylases by trichostatin A. We conclude that the use of recombinant viruses containing reporter genes, under the regulation of lytic and latency promoter control in neuronal cultures in which latency can be established and reactivation can be induced, is a potentially powerful system in which to study the molecular events that occur during HSV infection of neurons.  相似文献   

9.
Murine models of gamma interferon (IFN-gamma) deficiency demonstrate the role of this cytokine in attenuating acute herpes simplex virus (HSV) disease; however, the effect of IFN-gamma on the establishment and maintenance of neuronal latency and viral reactivation is not known. Using the IFN-gamma knockout (GKO) model of IFN-gamma deficiency and sensitive quantitative PCR methods, we show that IFN-gamma significantly reduces the ganglion content of latent HSV-1 in BALB/c mice, which in turn delays viral time to reactivation following UV irradiation. Similar effects were not seen in the C57BL/6 strain. These results indicate that IFN-gamma significantly attenuates latent HSV infection in the mouse model of ocular infection but has no impact on the maintenance of latency or virus reactivation.  相似文献   

10.
Kanai K  Yamada S  Inoue N 《Uirusu》2010,60(2):197-207
Varicella-zoster virus (VZV) causes varicella in primary infection and zoster after reactivation from latency. Both herpes simplex virus (HSV) and VZV are classified into the same alpha-herpesvirus subfamily. Although most VZV genes have their HSV homologs, VZV has many unique biological characteristics. In this review, we summarized recent studies on 1) animal models for VZV infection and outcomes from studies using the models, including 2) viral dissemination processes from respiratory mucosa, T cells, to skin, 3) cellular receptors for VZV entry, 4) functions of viral genes required uniquely for in vivo growth and for establishment of latency, 5) host immune responses and viral immune evasion mechanisms, and 6) varicella vaccine and anti-VZV drugs.  相似文献   

11.
12.
13.
Herpes simplex virus (HSV) establishes latent infection in long‐lived neurons. During initial infection, neurons are exposed to multiple inflammatory cytokines but the effects of immune signaling on the nature of HSV latency are unknown. We show that initial infection of primary murine neurons in the presence of type I interferon (IFN) results in a form of latency that is restricted for reactivation. We also find that the subnuclear condensates, promyelocytic leukemia nuclear bodies (PML‐NBs), are absent from primary sympathetic and sensory neurons but form with type I IFN treatment and persist even when IFN signaling resolves. HSV‐1 genomes colocalize with PML‐NBs throughout a latent infection of neurons only when type I IFN is present during initial infection. Depletion of PML prior to or following infection does not impact the establishment latency; however, it does rescue the ability of HSV to reactivate from IFN‐treated neurons. This study demonstrates that viral genomes possess a memory of the IFN response during de novo infection, which results in differential subnuclear positioning and ultimately restricts the ability of genomes to reactivate.  相似文献   

14.
Chen SH  Yao HW  Huang WY  Hsu KS  Lei HY  Shiau AL  Chen SH 《Journal of virology》2006,80(24):12387-12392
For decades, numerous ex vivo studies have documented that latent herpes simplex virus (HSV) reactivates efficiently from ganglia, but rarely from the central nervous systems (CNS), of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in both sites. Here we show that 88% of mouse brain stems reactivated latent virus when they were dissociated into cell suspensions before ex vivo explant culture. The efficient reactivation of HSV from the mouse CNS was demonstrated with more than one viral strain, viral serotype, and mouse strain, further indicating that the CNS can be an authentic latency site for HSV with the potential to cause recurrent disease.  相似文献   

15.
16.
During an initial encounter with herpes simplex virus type 1 (HSV-1) it takes several days for an adaptive immune response to develop and for herpes-specific CD8(+) T cells to infiltrate sites of infection. By this time the virus has firmly established itself within the innervating sensory nervous system where it then persists indefinitely. Preventing the establishment of viral latency would require blocking the skin to nervous system transmission of the virus. We wished to examine if CD8(+) T cells present early during acute HSV-1 infection could block this transmission. We show that effector CD8(+) T cells failed to prevent the establishment of HSV latency even when present prior to infection. This lack of blocking likely reflects the delayed infiltration of the CD8(+) T cells into the infected skin. Examination of the kinetics of HSV-1 infection highlighted the rapidity at which the virus infects the sensory ganglia and singled out early viral replication within the skin as an important factor in determining the magnitude of the ensuing latent infection. Though unable to prevent the establishment of latency, CD8(+) T cells could reduce the average viral copy number of the residual latent infection by dampening the skin infection and thus limiting the skin-to-nerve transmission of virus.  相似文献   

17.
18.
The establishment of latent infections in sensory neurons is a remarkably effective immune evasion strategy that accounts for the widespread dissemination of life long Herpes Simplex Virus type 1 (HSV1) infections in humans. Periodic reactivation of latent virus results in asymptomatic shedding and transmission of HSV1 or recurrent disease that is usually mild but can be severe. An in-depth understanding of the mechanisms regulating the maintenance of latency and reactivation are essential for developing new approaches to block reactivation. However, the lack of a reliable mouse model that supports efficient in vivo reactivation (IVR) resulting in production of infectious HSV1 and/or disease has hampered progress. Since HSV1 reactivation is enhanced in immunosuppressed hosts, we exploited the antiviral and immunomodulatory activities of IVIG (intravenous immunoglobulins) to promote survival of latently infected immunodeficient Rag mice. Latently infected Rag mice derived by high dose (HD), but not low dose (LD), HSV1 inoculation exhibited spontaneous reactivation. Following hyperthermia stress (HS), the majority of HD inoculated mice developed HSV1 encephalitis (HSE) rapidly and synchronously, whereas for LD inoculated mice reactivated HSV1 persisted only transiently in trigeminal ganglia (Tg). T cells, but not B cells, were required to suppress spontaneous reactivation in HD inoculated latently infected mice. Transfer of HSV1 memory but not OVA specific or naïve T cells prior to HS blocked IVR, revealing the utility of this powerful Rag latency model for studying immune mechanisms involved in control of reactivation. Crossing Rag mice to various knockout strains and infecting them with wild type or mutant HSV1 strains is expected to provide novel insights into the role of specific cellular and viral genes in reactivation, thereby facilitating identification of new targets with the potential to block reactivation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号