首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pot experiments were conducted to evaluate the possible interaction of salinity (osmotic potential -0.3, -0.9 and -1.2 MPa) and occurrence of Azospirillum lipoferum or exogenous gibberellic acid (GA3) (100 μg g-1) on growth and some physiological parameters of maize. 15N-uptake as well as the percentage of nitrogen derived from 15N-fertilizer were decreased by increasing the NaCl concentrations and completely inhibited at concentrations corresponding to osmotic potentials -0.9 and -1.2 MPa. The percentage of nitrogen originating from N2 fixation was significantly correlated to the total counts of Azospirillum cells that colonized the histosphere. At high NaCl concentrations although no significant changes in N % in shoot dry mass either in inoculated or uninoculated plants were observed, the total N-yield [mg(N) pot-1] was decreased. Fresh and dry shoot mass significantly increased by Azospirillum inoculation. Azospirillum and GA3 treatments were positively correlated with most of the parameters analysed. Azospirillum inoculation or GA3 application at NaCl concentrations up to -1.2 MPa significantly increased the chlorophyll, K, Ca, soluble saccharides and protein contents as compared with control plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The effects of salt stress on dry mass, lipid peroxidation, polyphenol and hydrogen peroxide content and activities of antioxidative enzymes were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under a broad range of NaCl concentrations (0, 100, 200, and 300 mM) on Murashige and Skoog medium for 45 d. Dry mass of both species increased at low (100 mM) salinity but decreased at higher NaCl concentrations. Malondialdehyde (MDA) content decreased at low salinity, whereas increased at 200 and 300 mM NaCl. H2O2 content in S. europaea was considerably enhanced by salinity, but it was not significantly affected in S. persica. The salt stress progressively enhanced the polyphenol content in S. persica, whereas in S. europaea, it increased with respect to the control only at higher salinities. In both species, the salinity progressively enhanced the superoxide dismutase (SOD) and peroxidase (POD) activities, whereas the CAT activity was only registered at the low salinity and the APX activity decreaseed in both species. The results indicate that S. persica exhibited a better protection mechanism against oxidative damage and it is more salt-tolerant than S. europaea.  相似文献   

3.
Effects of NaCl on growth in vitro and contents of sugars, free proline and proteins in the seedlings and leaf explants of Nicotiana tabacum cv. Virginia were investigated. The fresh and dry mass of the seedlings decreased under salinity. These growth parameters in leaf explants decreased at 50 mM NaCl and increased up to 150 mM NaCl and then decreased at higher level of salinity. Free proline content in both seedlings and leaf explants increased and polysaccharide content decreased continuously with increasing of NaCl concentration. Reducing sugars, oligosaccharides, soluble sugars and total sugars contents in both seedlings and leaf explants decreased up to 150 mM NaCl and then increased at higher concentrations of NaCl.  相似文献   

4.
以一年生红叶石楠‘鲁班’盆栽苗为材料,研究了不同浓度NaCl胁迫下其生长、生理生化指标和叶片显微结构的变化。结果表明:在0.2%、0.4%和0.6%的NaCl胁迫下植株生长正常,而在0.8%、1.0%和1.2%的NaCl胁迫下植株生长受抑制;叶片最大荧光(Fm)、光系统II(PSII)最初光能转换效率(Fv/Fm)、光化学猝灭系数(qP)、表观光合电子传递速率(ETR)随NaCl浓度的升高而降低,其中在0.8%、1.0%和1.2%的NaCl胁迫下比对照显著降低;叶绿素a和叶绿素b含量及叶绿素a/b的比值随盐浓度的升高而降低;在0.2%、0.4%和0.6%的NaCl胁迫下,叶片中超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性较对照显著上升,而当NaCl浓度为0.8%、1.0%和1.2%时显著下降;在0.4%和0.6%的NaCl胁迫下叶片中丙二醛(MDA)的含量与对照相比显著降低,0.8%、1.0%和1.2%的NaCl胁迫下显著升高;叶中栅栏细胞在NaCl浓度为0.2%、0.4%和0.6%时逐渐纵向伸长且排列更紧密,浓度为0.8%、1.0%和1.2%时逐渐缩短且疏松,且栅栏组织厚度在0.6%的NaCl胁迫下达到最大。由此表明,红叶石楠‘鲁班’在NaCl浓度不高于0.6%的基质中能正常生长。  相似文献   

5.
The salt tolerance of peanut (Arachis hypogaea L.) seedlings was evaluated by analyzing growth, nutrient uptake, electrolyte leakage, lipid peroxidation and alterations in levels of some organic metabolites under NaCl stress. The plant height, leaf area and plant biomass decreased significantly in salt-treated seedlings as compared with control. The relative water content (RWC %) of leaf decreased by 16 % at high concentrations of NaCl. There was an increase in the lipid peroxidation level and decrease in the electrolyte leakage at high concentrations of NaCl. The total free amino acid and proline contents of leaf increased by 5.5- and 43-folds, respectively in 150 mM NaCl-treated plants as compared with control. Total sugar and starch content increased significantly at high concentrations of NaCl. Chl a, Chl b, total chlorophyll and carotenoid contents decreased significantly at high salinity. Na+ contents of leaf, stem and root increased in dose-dependent manner. K+ content remained unaffected in leaf and root and decreased in stem by salinity. The results from present study reveal that the peanut plants have an efficient adaptive mechanism to tolerate high salinity by maintaining adequate leaf water status associated with growth restriction. In order to circumvent the stress resulting from high salinity, the levels of some organic metabolites such as total free amino acids, proline, total sugars and starch were elevated. The elevated levels of the organic metabolites may possibly have some role in maintenance of osmotic homeostasis, nutrient uptake and adequate tissue water status in peanut seedlings under high-salinity conditions.  相似文献   

6.
The haptophyte microalga Tisochrysis lutea was heterotrophically grown in F2 medium with different combinations of pH and salinity. Growth, oil content and fatty acids (FAs) profile were determined under each set of conditions. The salinity was adjusted using NaCl at concentrations of 0.4, 0.6, 0.8, or 1.0 M, while pH was adjusted at 7, 8, or 9, and heterotrophic growth was performed using organic carbon in the form of sugar cane industry waste (CM). Fatty acid methyl esters (FAMEs) were identified by gas chromatography. The results showed that pH of 8.0 was the optimal for dry weight and oil production, regardless of the salinity level. At pH 8.0, growth at a salinity of 0.4 M NaCl was optimal for biomass accumulation (1.185 g L-1). Under these conditions, the maximum growth rate was 0.055 g L-1 d-1, with a doubling time of 17.5 h and a degree of multiplication of 2.198. Oil content was maximal (34.87%) when the salinity was 0.4 M and the pH was 9.0. The ratio of saturated to unsaturated FAs was affected by the pH value and salinity, in that unsaturated FAs increased to 58.09% of the total FAs, considerably greater than the value of 40.59% obtained for the control (0.4 M NaCl and pH 8.0).  相似文献   

7.
The salinity tolerance of aRhizobium meliloti strain, used as inoculum, was established by growing the strain for seven consecutive generations in a broth containing 0–1.2% NaCl. Identical generation times and viable cell numbers were observed. Furthermore, the nodulation, plant yield and elemental composition ofM. sativa grown on agar slopes responded identically to all inocula, irrespective of the levels of NaCl with which they were grown. The effect of salinity on the ability ofM. sativa to grow and fix nitrogen was tested on agar slopes containing 0–1.2 % NaCl. At 0.0, 0.2 and 0.4 % NaCl the induced fixation was identical as indicated by the constant values of nodulation and plant yield. However, a significant reduction at 0.8 and almost a total suppression at 1.2 % NaCl occurred. Commensurate was the effect of inoculation on the elemental composition ofM. sativa as a function of salinity at the agar medium. The concentration of Mo, Mn, Sr, Cu and Zn, is clearly affected by fixation while salinity has no effect. Their concentration in the inoculated plants is significantly lower compared to the uninoculated at 0–0.4 % NaCl levels, when significant fixation occurred. In contrast, at 0.8 and 1.2 % NaCl their concentration in inoculated and uninoculated plants tends to overlap. On the other hand, the concentration of K, Rb, Br and Cl is affected mainly by salinity. Finally, Ni is affected by neither salinity nor nitrogen fixation.  相似文献   

8.
The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.  相似文献   

9.
The effects of salinity on growth and fatty acid composition of borage (Borago officinalis L.) leaves and seeds grown in hydroponic medium were investigated. Three different levels of NaCl (25, 50, and 75 mM) were applied. The first results showed that salinity significantly reduced plant growth by 56.5 % at 75 mM compared with the control, suppressed seed yield at 50 and 75 mM, and increased lipid peroxidation. Raising NaCl concentrations led to an important decrease in total fatty acid (TFA) content by 77 % at 75 mM NaCl. Moreover, the polyunsaturated fatty acid (PUFA) content decreased, whereas the saturated fatty acids increased with respect to increasing salinity. The 25 mM NaCl level did not modify the fatty acid composition of seeds and their contents.  相似文献   

10.
We studied growth and photosynthesis of cucumber (Cucumis sativus) seedlings under two vapor-pressure deficit levels (VPD; 0.4 and 3.0 kPa), two salinity levels (0 mM and 34 mM NaCl), and two CO2 concentrations ([CO2]; 400 and 1,000 μmol mol–1). Relative growth rate (RGR) decreased with increasing VPD, but the causal factor differed between salinity levels and CO2 concentrations. Under ambient [CO2], RGR decreased with increasing VPD at low salinity mainly due to decreased leaf area ratio (LAR), and decreased net assimilation rate (NAR) at high salinity. The decrease in intercellular [CO2] (Ci) with decreasing stomatal conductance caused by high VPD did not significantly limit net photosynthetic rate (PN) at low salinity, but PN was potentially limited by Ci at high salinity. At high [CO2], high VPD reduced LAR, but did not affect NAR. This is because the decrease in Ci occurred where slope of PNCi curve was almost flat.  相似文献   

11.
不同盐分水平对柽柳扦插苗根系生长及生理特性的影响   总被引:4,自引:0,他引:4  
柽柳(Tamarix chinensis)作为黄河三角洲湿地的优势种之一,对盐渍化环境具有较好的适应性。根系作为植物直接感受盐分变化的器官,其对盐分条件的响应特征对研究植物生存、湿地恢复、土壤改良等具有重要意义。以一年生柽柳插穗为研究材料,采用水培法,设置6个盐分水平:CK(空白对照)、0.4%、0.8%、1.2%、2.4%、3.6%进行试验,测定柽柳生根率、根寿命、根系生物量等生长指标及根中ATP合成酶和过氧化氢酶(CAT)活性及脱落酸(ABA)含量,研究柽柳根系生长及生理特性对不同盐分水平的响应。结果表明:(1)柽柳适合扦插繁殖的培养溶液含盐量低于0.8%;含盐量超过0.8%后,扦插生根率显著降低,根系寿命减短。(2)柽柳根长生长随含盐量升高呈下降趋势;主根数随含盐量升高先增加,至含盐量超过1.2%后逐渐减少。(3)柽柳可通过调整生物量的分配模式来适应盐环境,低盐时地上部生物量高于地下,高盐时根系生物量比例逐渐增加,但生物量仍低于地上部分。(4)ATP合成酶活性、CAT活性在含盐量低于0.8%时增加;含盐量超过0.8%时,活性降低;脱落酸(ABA)含量随含盐量增加先增加,含盐量超过1.2%时减少。  相似文献   

12.
13.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

14.
Efficient utilization of saline land for food cultivation can increase agricultural productivity and rural income. To obtain information on the salt tolerance/susceptibility of wild chicory (Cichorium intybus L.), the influence of salinity (0–260 mM NaCl) on chicory seed germination and that of two salinity levels of irrigation water (100 and 200 mM NaCl) on plant growth, antioxidative enzyme activity, and accumulation of proline and malondialdehyde (MDA) were investigated. The trials were performed outdoors, in pots placed under a protective glass covering, for two consecutive years. Seeds showed a high capacity to germinate in saline conditions. The use of 100 mM NaCl solution resulted in 81 % germination, whereas seed germinability decreased below 40 % using salt concentrations above 200 mM NaCl. Wild chicory showed tolerance to medium salinity (100 mM NaCl), whereas a drastic reduction in biomass was observed when 200 mM NaCl solution was used for irrigation. MDA, present in higher amounts in leaves than in roots, decreased in both tissues under increasing salinity. Proline content increased remarkably with the level of salt stress, more so in roots than in leaves. In salt stress conditions, the activity of antioxidant enzymes (APX, CAT, POD, SOD) was enhanced. The electrophoretic patterns of the studied enzymes showed that the salinity of irrigation water affected only the intensity of bands, but did not activate new isoforms. Our results suggest that wild chicory is able to grow in soil with moderate salinity by activating antioxidative responses both in roots and leaves.  相似文献   

15.
Olive ( Olea europaea L. cv. Frantoio) plants grown hydroponically in a glasshouse were supplied with half-strength Hoagland solutions containing 0, 50, 100, and 200 m M NaCl for 4 weeks and subsequently supplied with the standard solution without NaCl to relieve salinity stress. Two complete stress-relief cycles were repeated on the same plant material during one growing season. Growth was inhibited at all salt levels, but most growth parameters of plants treated with 50 or 100 m M NaCl returned to control levels after 4 weeks of relief. More severely stressed plants (200 m M NaCl) recovered to only 60% of the growth of the controls after 4 weeks. During relief, plants treated with 50 and 100 m M NaCl had net photosynthetic rates and stomatal conductances higher than the controls. Increasing the NaCl concentration of the external solution from 0 to 200 m M decreased both leaf pre-dawn water potential (from -0.3 to -1.0 MPa) and osmotic potential (from -2.1 to -2.7 MPa). The sodium concentration in the leaves of plants treated with 200 m M NaCl reached maximum levels of 211 and 388 m M (expressed on a tissue water basis) at the end of the first salinity and relief periods, respectively. Leaf chloride concentrations were 359 and 223 m M at the same sampling dates. These data indicate that the inhibitory effects of salinization on growth and gas exchange of the salt-tolerant olive cv. Frantoio can be readily reversed when salinity is relieved, despite the marked accumulation of potentially toxic ions (Na+. Cl) in the leaf.  相似文献   

16.
Navicula sp. (cf.N. tenelloides) was isolated from a salt marsh in Kuwait. The alga grew best with 0.5M NaCl, but abundant growth still occurred up to 2.5M NaCl. The total lipid content and the carotene to chlorophyll ratio of the cells increased with increasing salinity of the medium from 0.5 to 1.7M NaCl, but declined with 2.5M NaCl. Irrespective of the medium salinity, the major lipid class was that of triacylglycerols. The predominant fatty acids in the total lipids of cells grown at different NaCl concentrations were palmitic (16:0) and palmitoleic (16:1) acids; eicosapentaenoic acid (20:5) made up 8–9% of the total fatty acids. The fatty acid composition of the individual lipid classes of cells grown at different salinities is described. The highest concentration of 20:5 occurred in monogalactosyldiacylglycerols and digalactosyldiacylglycerols. In view of the rather small size of this diatom, its halotolerance and its fair content of 20:5, it is suggested as a potential food source for the mariculture industry.  相似文献   

17.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

18.
Mosses are keystone species in peatlands and are an important part of the vegetation of the pre-mined peatlands. Therefore, mosses should be included in rehabilitation projects following oil sands exploitation in north-western Canada. However, mosses growing in post-mined landscapes must tolerate elevated salinity levels found in oil sands process water (OSPW). Knowledge of salinity tolerance and thresholds for fen mosses is needed to place these mosses in the newly created landscapes. We tested the effects of NaCl and Na2SO4 on four fen moss species growing in Petri dishes in growth chambers. We simulated two scenarios: (1) four immersion times (¼, 1, 3 and 7 days) in NaCl (0%, 20%, 60% or 100% of the concentration found in OSPW) mimicking periodic flooding and (2) a permanent saline influence (NaCl or Na2SO4 alone or in combination at 0%, 30%, 50% or 70% of the concentrations found in OSPW) mimicking situations of high water tables with different contamination levels. The effects on moss growth were estimated by counting new innovations of Bryum pseudotriquetrum, Campylium stellatum, Sphagnum warnstorfii and Tomenthypnum nitens. All tested mosses tolerated saline levels typically found in post-mined landscapes (up to 500 mg L−1 of NaCl and 400 mg L−1 of Na2SO4) for up to 100 days of exposure. Short periods of immersion (up to 7 days independently of salt concentrations) induced the production of innovation in non-Sphagnum species, but S. warnstorfii was more rapidly impacted at higher salt concentrations. Short pulses of salt (from 6 h to 7 days) did not influence the formation of new innovations for C. stellatum and T. nitens. Salt type (NaCl and/or Na2SO4) had no effect on moss growth. However, a longer exposure (100 days) with saline water, even at low concentrations, diminished the formation of new innovations for B. pseudotriquetrum and T. nitens. C. stellatum was the least affected by salinity and thus we suggest it is the best species to reintroduce in constructed fens.  相似文献   

19.
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0?C1,000?mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200?mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000?mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na+ and Cl? concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200?mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (F v/F m), but a marked decrease in the relative quantum yield of photosystem II (??PSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000?mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0?C400?mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.  相似文献   

20.
Jorge CD  Lamosa P  Santos H 《The FEBS journal》2007,274(12):3120-3127
The intracellular accumulation of low molecular mass organic compounds in response to stressful conditions was investigated in the thermophilic bacterium Petrotoga miotherma, a member of the order Thermotogales. This led to the discovery of a new solute, whose structure was established as alpha-D-mannopyranosyl-(1-->2)-alpha-D-glucopyranosyl-(1-->2)-glycerate (MGG) by MMR spectroscopy and MS. Under optimum growth conditions (3% NaCl; 55 degrees C), MGG was the major solute [up to 0.6 micromol.(mg protein)(-1)]; alpha-glutamate and proline were also present but in minor amounts [below 0.08 micromol.(mg protein)(-1)]. The level of MGG increased notably with the salinity of the growth medium up to the optimum NaCl concentration. At higher NaCl concentrations, however, the level of MGG decreased, whereas the levels of proline and alpha-glutamate increased about five-fold and 10-fold, respectively. MGG plays a role during low-level osmotic adaptation of Petrotoga miotherma, whereas alpha-glutamate and, to a lesser extent, proline are used for osmoprotection under salt stress. MGG is not part of the cell strategy for coping with heat or oxidative stress. Nevertheless, MGG was an efficient protector of pig heart malate dehydrogenase against heat inactivation and freeze-drying, although mannosylglycerate was better. This is the first report on the occurrence of MGG in living systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号