首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transduction of extracellular signals through the membrane involves both the lipid and protein moiety. Phosphatidylserine participates to these processes as a cofactor for protein kinase C activity and thus the existence of a regulatory mechanism for its synthesis ought to be expected. In plasma membranes from rat cerebral cortex, the activity of serine base exchange enzyme, that is mainly responsible for phosphatidylserine synthesis in mammalian tissues, was reduced by the addition to the incubation mixture of AlF4- or GTP-g-S, known activators of G proteins, whereas ATP was almost uneffective. GTP-g-S inhibited the enzyme activity only at relatively high concentration (> 0.5 mM). When the synthesis of phosphatidylserine in the same cerebral area was investigated by measuring the incorporation of labelled serine into the phospholipid in the homogenate buffered at pH 7.6, ATP had an inhibitory effect as GTP-g-S and AlF4-. Heparin activated both serine base exchange enzyme in plasma membranes and phosphatidylserine synthesis.The preincubation of plasma membranes in the buffer without any other addition at 37øC for 15 min reduced by 30% serine base exchange enzyme activity. The remaining activity responded to the addition of GTP-g-S but was insensitive to 5 mM AlF4-, a concentration that inhibited by 60% the enzyme assayed without preincubation.These results indicate the existence of different regulatory mechanisms, involving ATP and G proteins, possibly acting on different enzymes responsible for the synthesis of phosphatidylserine. Since previous studies have shown that hypoxia increases the synthesis of this phospholipid in brain slices or homogenate (Mozzi et al. Mol Cell Biochem 126: 101-107, 1993), it is possible that hypoxia may interfere with at least one of these mechanisms. This hypothesis is supported by the observation that in hypoxic homogenate 20 mM AlF4- was not able to reduce the synthesis of phosphatidylserine as in normoxic samples. A similar difference between oxygenated and hypoxic samples, concerning their response to AlF4-, was observed when the incorporation of ethanolamine into phosphatidylethanolamine was studied. The incorporation of choline into phosphatidilcholine was, on the contrary, inhibited at a similar extent in both experimental conditions.  相似文献   

2.
This study reports on the construction, calibration and use of recombinant cells of Rhodobacter capsulatus expressing the luciferase gene of the North American firefly Photinus pyralis to detect, by bioluminescence, variations of endogenous ATP levels under various physiological conditions. We show that the antibiotic polymyxin B allows luciferin to rapidly move into cell cytosol, but does not make external ATP freely accessible to intracellular luciferase. Notably, in toluene:ethanol-permeabilized cells, the apparent K(mATP) for luciferase (50 microM) is similar to that measured in soluble cell fractions. This finding limits the applicability of the firefly luciferase for monitoring intracellular maximal ATP concentration because dark/aerobic-grown recombinant cells of Rba. capsulatus contain approximately 1.3-2.6+/-0.5 mM ATP. Therefore, the effects of chemical and physical factors such as oxygen, light, carbonyl cyanide m-chlorophenyl hydrazone and antimycin A on ATP synthesis were examined in cells subjected to different starvation periods to reduce the endogenous ATP pool below the luciferase ATP saturation level (< or =0.2 mM). We conclude that the amount of endogenous ATP generated by light is maximal in the presence of oxygen, which is required to optimize the membrane redox poise.  相似文献   

3.
The gene encoding firefly luciferase is a commonly used reporter for transient expression assays in plants. We have found that the concentration of buffers normally used in luciferase assays is too low to adequately buffer acidic plant organs. This results in low apparent luciferase activity as well as high variability among replicates. In a transient assay system based on particle bombardment of ripe tomato fruit, luciferase activity driven by the 35S promoter of cauliflower mosaic virus was increased as much as 130 fold by increasing the concentration of the buffer from 50 mM to 300 mM. Using 300 mM buffer, expression levels of luciferase driven by three different plant promoters were found to reflect expression patterns in intact plants.  相似文献   

4.
A fusion protein consisting of streptavidin and firefly luciferase was constructed to establish an accurate measuring technique of local ATP concentration. The fusion protein retained the binding ability of streptavidin and enzymatic activity of luciferase. Also, it could detect the concentration of antigens and could determine nanomolar concentrations of ATP in its fixed form via interactions with biotin-conjugated antibodies.  相似文献   

5.
The oxidation of mercury vapor (Hg degrees) to divalent inorganic mercury (Hg2+) was studied in rat brain homogenates. By using a "degassing" method, it was possible to speciate the mercury present in the homogenate and, for the first time, to measure the rate of oxidation as a function of the substrate (Hg degrees) concentration. Mercury oxidation was first-order with respect to substrate concentration at all concentrations tested, and the first-order rate constant for the oxidation process was proportional to homogenate concentration. The role of catalase compound I in mercury vapor oxidation by brain homogenate was examined by observing the effects of two inhibitors of catalase (catalase compound I) on homogenate mercury-oxidizing activity and catalase activity. Sodium azide (50 mM) completely inhibited both mercury-oxidizing activity and catalase activity. Aminotriazole (3-amino-1H-1,2,4-triazole) (50 mM) completely inhibited only mercury-oxidizing activity; some residual catalase activity was found in the aminotriazole-treated homogenate. It was concluded that catalase compound I plays a major role in the oxidation of Hg degrees, but the possibility that catalase-independent pathways make a minor contribution cannot be excluded.  相似文献   

6.
Min K  Steghens J 《Biochimie》2001,83(6):523-528
During experiments aimed at understanding the time course of appearance of reaction products in the Photinus pyralis luciferase system, an expected compound with a typical nucleotide UV spectrum was isolated. According to capillary electrophoresis (CE) analysis and 1H, 31P-NMR spectra, it was unambiguously found to be ADP, either with extracted or recombinant enzymes. The ADP synthesis was demonstrated by standard UV spectrophotometric methods and CE analysis. Also, the luciferase produced AMP and ATP from ADP. This reaction was completely inhibited by Ap(5)A at 250 nM and was independent of the light emitting properties of the enzyme. The only catalytic mechanism to explain the production of ADP is an intrinsic adenylate kinase activity of luciferase. The K(m) values of the AK activity are 0.3, 0.7, 0.06 mM for AMP, ADP, and ATP respectively. The multiple enzyme activities of luciferase may be partly responsible for the complex kinetics of light emission by changing the nucleotide concentrations.  相似文献   

7.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

8.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

9.
We have developed a real-time, simple, and sensitive method for the detection of ATP hydrolysis activity (ATPase) of apyrase (EC 3.6.1.5). The assay is based on the continuous monitoring of the ATP hydrolysis reaction using the firefly luciferase system. The method is sensitive and yields linear responses between 0.7 and 70 mU for the Solanum tuberosum apyrase. The detection limit was found to be 0.7 mU apyrase. We used the method to study the inhibitory effects of various compounds on the ATPase activity of potato apyrase, measured with 500 nM ATP. The concentrations of azide, AMP, Pi, fluoride, and ADP, which inhibit the ATPase activity by 50% (IC50), were found to be approximately 100, 0.25, 0.125, 0.04, and 0.035 mM, respectively. Under our assay conditions, vanadate inhibited about 98% of the ATPase activity of the potato apyrase at a concentration of 250 microM. The possibility of using the new method for other applications is discussed.  相似文献   

10.
We have adapted bioluminescence methods to be able to measure phosphodiesterase (PDE) activity in a one-step technique. The method employs a four-enzyme system (PDE, adenylate kinase (AK) using excess CTP instead of ATP as substrate, pyruvate kinase (PK), and firefly luciferase) to generate ATP, with measurement of the concomitant luciferase-light emission. Since AK, PK, and luciferase reactions are coupled to recur in a cyclic manner, AMP recycling maintains a constant rate of ATP formation, proportional to the steady-state AMP concentration. The cycle can be initiated by the PDE reaction that yields AMP. As long as the PDE reaction is rate limiting, the system is effectively at steady state and the bioluminescence kinetics progresses at a constant rate proportional to the PDE activity. In the absence of cAMP and PDE, low concentrations of AMP trigger the AMP cycling, which allows standardizing the system. The sensitivity of the method enables detection of <1 μU (pmol/min) of PDE activity in cell extracts containing 0.25–10 μg protein. Assays utilizing pure enzyme showed that 0.2 mM IBMX completely inhibited PDE activity. This single-step enzyme- and substrate-coupled cyclic-reaction system yields a simplified, sensitive, reproducible, and accurate method for quantifying PDE activities in small biological samples.  相似文献   

11.
We have studied the effects of changes of intracellular ATP concentration ([ATP]i) on the activity of ATP-sensitive K-channels (IK(ATP] and of Na,K-ATPase in intact cells of the insulin-secreting cell-line HIT-T15. Pre-exposure of HIT beta-cells to oligomycin caused a dose-dependent reduction in [ATP]i. Marked activation of IK(ATP) activity was found when ATP was lowered below 3 mM. Na,K-ATPase was progressively inhibited as ATP was lowered to 1.5 mM. These data demonstrate that changes in intracellular ATP in the millimolar range markedly influence the activity of two beta-cell membrane proteins having affinities for ATP in the micromolar range. This suggests that submembrane [ATP] may be considerably below the measured bulk cytosolic concentration. The findings also support the proposed role of intracellular ATP in mediating effects of changes in glucose concentration on the activity of beta-cell IK(ATP) and insulin secretion.  相似文献   

12.
The concentration of ATP generated by yeast mitochondria and consumed by yeast hexokinase was monitored using native firefly luciferase in solution, or recombinant luciferase localized at the surface of mitochondria. In the absence of hexokinase, both probes perform similarly in detecting exogenous or mitochondrially-generated ATP. The steady-state concentrations of ATP can be reduced in a dose-dependent manner by hexokinase. With hexokinase added in large excess, the localized probe reports substantial ATP concentrations while none is detectable by soluble luciferase. Thus, ATP accumulates near the membrane where it appears, relatively to solution, and vice versa for ADP. The extent of nucleotide gradients is shown to be correlated with the specific activity of oxidative phosphorylation and with the viscosity of the medium, but independent of the concentration of the organelles. A simple model involving diffusional restrictions is presented to describe this behavior. The metabolic and evolutionary implications of cellular catalysis limitation by physical processes are discussed.  相似文献   

13.
The characteristics of myocardial guanylate cyclase (GTP pyrophosphatelyase, EC 4.6.1.2) were studied. Specific activity of the myocardial enzyme in five vertebrate species was guinea pig greater than man greater than cat greater than dog greater than rat. In the guinea pig, guanylate cyclase activity was uniformly distributed throughout the anatomical regions of the heart. The major portion of the enzyme activity was retrieved in the supernatant fraction after centrifugation at 12 000 times g. The Km for GTP was similar in supernatant (0.12 mM) and particulate (0.21 mM) preparations, although the Ka for Mn2+ in particulate preparations (0.3-0.6 mM) was less than that observed for guanylate cyclase in the supernatant fraction (0.8-2.0 mM). ATP competitively inhibited supernatant and particulate activity. Addition of 0.005-10.0 mM Ca2+ to assay incubations did not enhance guanylate cyclase activity. Suspension of 105 000 times g supernatant guanylate cyclase preparations with membrane lipids or phosphatidylserine stimulated activity 1.4-4.3 fold, whereas similar treatment of particulate preparations caused little alteration of enzyme activity. Addition of the cholinergic agonists acetylcholine, carbachol or methacholine (10-4-10-8 M) to homogenate, supernatant, particulate and disrupted tissue slice preparations in the presence of 0.0012-1.2 mM GTP, 0.3-10.0 mM Mn2+ and 0.005-10.0 mM Ca2+ or 0.0012-1.2 mM ATP did not stimulate guanylate cyclase activity. Similarly, further stimulation of guanylate cyclase activity was not elicited when enzyme-lipid suspensions were assayed in the presence of cholinergic agents.  相似文献   

14.
Liu DY  Gorrod JW 《Life sciences》2000,66(1):77-88
N1-Oxidation is a major metabolic pathway for 9-benzyladenine (BA) catalyzed by the cytochrome P450 system in animal hepatic microsomes. After normal hamster hepatic microsomes or phenobarbital induced rabbit hepatic microsomes were preincubated in the presence of cyclic AMP-dependent protein kinase catalytic subunit (PKA), MgCl2 and ATP, BA-N1-oxidation was significantly decreased. However, further investigation indicated that the decrease of BA-N1-oxidation seemed to be a combination of the effects of PKA and ATP, as ATP alone showed a biphasic regulatory effect on BA-N1-oxidation when microsomes were preincubated in the presence of various concentrations of ATP. In the lower ATP concentration range (0.5-2.5mM), BA-N1-oxidation increased along with the increase of ATP concentration; whereas BA-N1-oxidation decreased when the ATP concentration was higher (>5mM). The biphasic regulatory effects of ATP on BA-N1-oxidation seem dependent on the incubation process, as preincubation markedly strengthened the effects. When microsomes were incubated at 37 degrees C for different time lengths in the absence or presence of ATP (2.5 or 20mM), the activity of BA-N1-oxidase decreased at similar rates in all groups, but the activity levels of BA-N1-oxidase were different among the groups. The cytochrome P450 content was not changed parallel to the variation of BA-N1-oxidation when microsomes were incubated in the presence of ATP, indicating that the effects of ATP on BA-N1-oxidation were not mediated by affecting CYP stability. In addition, the activity of NADPH-cytochrome P450 reductase was not markedly affected by ATP without incubation. The result implied that ATP did not inhibit the reductase directly. After microsomes were incubated in the presence of low ATP concentration (2.5mM), the reductase was slightly inhibited, whilst high ATP concentration (20mM) showed marked inhibition (83% of control). This may partially contribute to the down-regulatory effect of ATP on BA-N1-oxidation. Furthermore, it was found that the presence of magnesium ions during preincubation weakened the up-regulatory effect of ATP (2.5mM) on BA-N1-oxidation, but showed no effect on the down-regulatory effect of ATP (20mM). Since these observed phenomena are not readily explained, a possible mechanism, i.e. phosphorylation and dephosphorylation of cytochrome P450, is suggested.  相似文献   

15.
DNA topoisomerase I activity was observed in two-day-old seeds of rice when the seeds started germination at 30°. Partially purified enzyme from cultured rice cells showed maximum activity at pH 7.0 with 75 mM NaCl in the absence of ATP, and showed resistance to camptothecin and DNA-intercalating reagents. The Mr was ca 80 000 using gel permeation on a Sephacryl S-200 column. After fractionation of the homogenate from cultured rice cells by centrifugation, the activity was observed mainly in the crude nuclear fraction.  相似文献   

16.
ATP pyrophosphohydrolase was partially purified from fetal bovine epiphyseal cartilage. The purification was about 10- and 100-fold over the enzyme activities of matrix vesicle fraction and cell homogenate, respectively. The pyrophosphohydrolase and alkaline phosphatase were separated by a sequential application of Sepharose CL-6B and DEAE-cellulose column chromatographies. The purified enzyme migrated as a single band corresponding to the molecular weight of 230,000 in sodium dodecyl sulfate-polyacrylamide disc gel by electrophoresis. The enzyme absolutely required Zn2+ for its activity and appeared to bind Zn2+ strongly with an apparent affinity of p[Zn2+]0.5 = 13.4. The apparent Km for ATP was 0.18 mM. The enzyme was also reactive toward various nucleoside triphosphates including GTP, CTP, and UTP. In contrast, various phosphodiesters including RNA, UDP-glucose, NAD, and bis-p-nitrophenylphosphate were 5% or less as reactive as the nucleoside triphosphates. The pyrophosphohydrolase was inactive toward adenosine 3':5'-monophosphate or various phosphonates. UDP-glucose (1 mM), NAD (1 mM), or RNA (1 mg/ml) failed to inhibit the ATP pyrophosphohydrolase activity. These observations suggest that the ATP pyrophosphohydrolase of the cartilage is probably not a phosphodiesterase I. The matrix vesicle fraction, which probably also included some plasma membrane vesiculated during collagenase digestion, contained the highest specific activity of the enzyme as compared to other subcellular fractions of either epiphyseal or articular cartilage.  相似文献   

17.
The activity of calcium-activated neutral proteinase (mM CANP) was determined in homogenate, myelin and supernatant of bovine brain corpus callosum. The enzyme activity in homogenate and myelin was increased eleven and thirteen-fold respectively by Triton X-100. Myelin prepared by the method of Norton and Poduslo as well as by a modified method, was shown to contain most (more than 50%) of homogenate mM CANP activity. The specific activity was highest in myelin, and increased almost three times more than the homogenate. Supernatant only contained 17% of enzyme activity. It is concluded from these studies that mM CANP is tightly bound to the membrane and predominantly associated with the myelin sheath.  相似文献   

18.
We report that ATP enhances the activity of galactosyltransferase-I, which synthesizes the linkage region between glycosaminoglycan chains and the core proteins of proteoglycans. The enzyme activity in cell-free fractions prepared from cultured human skin fibroblasts was measured by high-performance liquid chromatographic detection of galactosyl-xylosyl-(4-methylumbelliferone) produced from 4-methylumbelliferyl-beta-D-xyloside used as an acceptor. ATP at 2 mM increased the enzyme activity by about 60% in the 110 x g supernatant of the cell homogenate, but not in the supernatant or precipitate fractions obtained by 100,000 x g centrifugation. When both fractions (the 100,000 x g supernatant and precipitate) were mixed, the additional ATP increased the enzyme activity. This increase was canceled by heat treatment or trypsin digestion of the 100,000 x g supernatant. In addition, the 100,000 x g precipitate, which was prepared from the 110 x g supernatant preincubated with ATP, exhibited increased activity, and this increase was abolished by alkaline phosphatase treatment. These results suggest that a protein kinase in the 100,000 x g supernatant activates galactosyltransferase-I activity.  相似文献   

19.
Elevated galactose concentration in urine is an important clinical symptom of galactosemia and other metabolic disorders. A quantitative assay for galactose using firefly luciferase bioluminescence is presented. The assay couples the galactokinase and firefly luciferase reactions. A higher concentration of galactose present in the sample produces a faster decrease in ATP concentration, which is monitored by firefly luciferase bioluminescence. The kinetic assay is modeled and analyzed. The interference between the two reactions, the interference of certain sugars and other components in the urine, the specificity, and the optimal pH for galactokinase were studied. Calibration curves were constructed and compared with a conventional spectrophotometric assay for galactose. The bioluminescence assay is relatively fast and specific for galactose with a linear range from 1 to 20 mM galactose. The effect of other galactose metabolites (galactonate and galactitol) has also been studied.  相似文献   

20.
Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号