首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays) seedlings were pretreated prior to heat shock with either a progressive water stress of −0.25 megapascal PEG/hour from 0 to −1.25 megapascal over a 6-hour time period, or various concentrations of copper, cadmium, or zinc for 4 days. When the subsequent heat shock of 40 or 45°C was administered for 3 hours, the seedlings showed an induced thermotolerance to these temperatures, which were otherwise lethal to control (water grown) seedlings. Thermotolerance was exhibited by both the root and the shoot of pretreated seedlings, even though the water and heavy metal stresses were applied only to the roots. Neither of these pretreatments had induced the synthesis of detectable levels of heat shock proteins (Hsps) at the time of heat shock. Pretreatment of seedlings with a progressive heat shock of 2°C/hour from 26 to 36°C, which did induce Hsps 18, 70, and 84, resulted in tolerance of a severe water stress of −1.5, −1.75, or −2.0 megapascal for 24 hours. But these seedlings producing Hsps were no better protected against water stress than those pretreated with a progressive water stress which did not produce Hsps. Hsps appear not to act as general stress proteins and their presence is not always required for the establishment of thermotolerance.  相似文献   

2.
该实验选取处于生长期的油松(Pinus tabulaeformis)幼苗,研究土壤Cu、Cd胁迫条件下,美味牛肝菌(Boletus edulis)单独接种、红绒盖牛肝菌(Xerocomus chrysenteron)与美味牛肝菌混合接种处理,对油松幼苗的生长和重金属积累分布状况的影响,探讨不同接种对油松抗性的影响。研究发现,菌根接种不仅促进寄主油松的生长发育和生物量积累,而且显著降低油松体内的重金属积累浓度,减少重金属由根部向植物茎叶部分的转运。与单一接种相比,混合接种可以更加有效地缓解重金属对寄主的生物毒性,减少土壤中重金属元素向油松体内的转运。这种优势在高浓度的重金属胁迫环境下尤为明显。该实验中,在3 mg·kg-1 Cd胁迫下,混合菌根油松的茎叶和根部Cd浓度仅为未接种对照的59.1%和70.7%,比单一菌根降低了11.3%和18.1%,而混合菌根植物的茎叶和根部生物量干重则分别为未接种对照的1.14和1.20倍,单一菌根为未接种对照的1.18和1.17倍。在400 mg·kg-1Cu胁迫下,混合菌根植物茎叶和根部的干重分别是未接种植株的1.01和1.09倍,而混合菌根植物茎叶和根部的Cu浓度仅为未接种植株的61.8%和79.6%,比Boletus edulis菌根植物的Cu积累浓度下降了0.7%和3.8%。  相似文献   

3.
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

4.
After 50 years of coal mining, Huaibei Mine, located at 50 km southeast of Xuzhou City in East China, has grown to a middle-size city of 600,000 people from a small village of 2000 farmers. The Zhahe Valley, with 400 km2 of a built-up area and more than 100 km2 of subsided peri-urban wetland at the city center, is surrounded by eight exhausted old mines and communities. In cooperation with the local city government, an ecological landuse change assessment and eco-city planning project has been carried out with a focus on the assessment, restoration and enhancement of the wetland as an eco-service to the community. The assessment includes relationships to Green House Gas emissions and heat island effects, as well as measures for a livable, workable, affordable and sustainable human settlement development through industrial transition, landscape design and capacity building. This paper will briefly introduce the main ecological approaches and results of the assessment, including measures such as changing the car-dominated transportation network to a rail-dominated network, transforming the coal-oriented high-carbon industry to a service-oriented low-carbon industry, the C-shape urban form to an O-shape with a green–blue core at the center, and the fragmentized collapsed land to integrative eco-service land.  相似文献   

5.
Chemical amendments can enhance heavy metal phytoextraction by increasing metal bioavailability for plant root uptake and translocation to shoots, and by improving plant growth. This study assessed the effect of various amendments on plant growth and metal uptake over a 30-day period. An aminopolycarboxylic acid (EDDS), amino acid (histidine), organic acid (citric acid), biosurfactant (rhamnolipid), and inorganic ligand (sulfate) were applied as amendments individually or in combination to hydroponically grown ryegrass (Lolium perenne cv. SR4500) in the presence of a metal (Cu, Cd or Pb). EDDS (1 mM) was the most effective amendment (individually and in combinations) for enhancing Cu and Pb uptake to shoot tissue, while histidine was beneficial for increasing both Cu and Cd uptake. Individual treatments of citric acid, rhamnolipid and sulfate moderately enhanced shoot concentrations of Cu and Cd only. The combination of EDDS, rhamnolipid and citric acid resulted in the highest shoot metal levels, but also caused severe phytotoxicity. Translocation to shoot tissue was generally greater for amendments with higher affinity for the metal of interest, and metal mobility appeared to be influenced by speciation. Due to potential toxicity, amendment combinations may be more effective when applied shortly before harvesting.  相似文献   

6.
Low soil water potential and low or high root temperatures are important stresses affecting carbon allocation in plants. This study examines the effects of these stresses on carbon allocation from the perspective of whole plant mass balance. Sixteen-day old spring wheat seedlings were placed in a growth room under precisely controlled root temperatures and soil water potentials. Five soil water potential treatments, from −0.03 MPa to −0.25 MPa, and six root temperature treatments, from 12 to 32°C were used. A mathematical model based on mass balance considerations was used, in combination with experimental measurements of rate of net photosynthesis, leaf area, and shoot/root dry masses to determine photosynthate allocation between shoot and root. Partitioning of photosynthates to roots was the lowest at 22–27°C root temperature regardless soil water potential, and increased at both lower and higher root temperatures. Partitioning of photosynthates to the roots increased with decreasing soil water potential. Under the most favourable conditions, i.e. at −0.03 MPa soil water potential and 27°C root temperature, the largest fraction, 57%, of photosynthates was allocated to the shoots. Under the most stressed conditions, i.e. at −0.25 MPa soil water potential and 32°C root temperature, the largest fraction, more than 80%, of photosynthates was allocated to roots.  相似文献   

7.
Phytoremediation is a promising means of ameliorating heavy metal pollution through the use of transgenic plants as artificial hyperaccumulators. A novel Streptococcus thermophilus γ-glutamylcysteine synthetase-glutathione synthetase (StGCS-GS) that synthesizes glutathione (GSH) with limited feedback inhibition was overexpressed in sugar beet (Beta vulgaris L.), yielding three transgenic lines (s2, s4 and s5) with enhanced tolerance to different concentrations of cadmium, zinc and copper, as indicated by their increased biomass, root length and relative growth compared with wild-type plants. Transgenic sugar beets accumulated more Cd, Zn and Cu ions in shoots than wild-type, as well as higher GSH and phytochelatin (PC) levels under different heavy metal stresses. This enhanced heavy metal tolerance and increased accumulation were likely due to the increased expression of StGCS-GS and consequent overproduction of both GSH and PC. Furthermore, when multiple heavy metal ions were present at the same time, transgenic sugar beets overexpressing StGCS-GS resisted two or three of the metal combinations (50 μM Cd-Zn, Cd-Cu, Zn-Cu and Cd-Zn-Cu), with greater absorption in shoots. Additionally, there was no obvious competition between metals. Overall, the results demonstrate the explicit role of StGCS-GS in enhancing Cd, Zn and Cu tolerance and accumulation in transgenic sugar beet, which may represent a highly promising new tool for phytoremediation.  相似文献   

8.
For successful afforestation programs seed quality is crucial, but seedlings are susceptible to climatic stress. Therefore, to improve afforestation success it is necessary to compare performance of seedlings from natural and cultivated populations under different climatic conditions. We investigated growth performance in seedlings of three natural and four afforested Syrian Cupressus sempervirens L. populations under different temperature and moisture regimes. A “warm” climate chamber approximately simulated current mean annual temperatures (day/night: 20/10°C) while a “hot” chamber simulated an average increase of 5°C (day/night: 25/15°C). Seedlings were irrigated twice (drier) or thrice (moist) weekly. Seedlings from natural provenances outperformed those from afforested stands in all growth variables in both chambers. In the warm chamber, root length and biomass were not affected by irrigation for both population types, but shoot height decreased for afforested seedlings under drier treatment while it slightly increased in natural seedlings. In the hot chamber, shoot height decreased but root length and biomass increased for population types under the drier treatment. Comparison between the two chambers showed that under the drier treatment shoot height and biomass decreased at higher temperatures, but root length and biomass were not significantly different. The same response to higher temperatures was observed under the moist treatment, but root biomass decreased too. Our results emphasize the necessity to protect the remaining natural forest of C. sempervirens in Syria and recommend systematic collection of seed material from natural stands for afforestation programs. This might also hold for ex situ cultivation of retrieving rare and endangered plant species.  相似文献   

9.
Light is an important environmental regulator of diverse growth and developmental processes in plants. However, the mechanisms by which light quality regulates root growth are poorly understood. We analyzed lateral root (LR) growth of tobacco seedlings in response to three kinds of light qualities (red, white, and blue). Primary (1°) LR number and secondary (2°) LR density were elevated under red light (on days 9 and 12 of treatment) in comparison with white and blue lights. Higher IAA concentrations measured in roots and lower in leaves of plants treated with red light suggest that red light accelerated auxin transport from the leaves to roots (in comparison with other light qualities). Corroborative evidence for this suggestion was provided by elevated DR5::GUS expression levels at the shoot/root junction and in the 2° LR region. Applications of N-1-naphthylphthalamic acid (NPA) to red light-treated seedlings reduced both 1° LR number and 2° LR density to levels similar to those measured under white light; DR5::GUS expression levels were also similar between these light qualities after NPA application. Results were similar following exogenous auxin (NAA) application to blue light-treated seedlings. Direct [3H]IAA transport measurement indicated that the polar auxin transport from shoot to root was increased by red light. Red light promoted PIN3 expression levels and blue light reduced PIN1, 34 expression levels in the shoot/root junction and in the root, indicating that these genes play key roles in auxin transport regulation by red and blue lights. Overall, our findings suggest that three kinds of light qualities regulate LR formation in tobacco seedlings through modification of auxin polar transport.  相似文献   

10.
Huang Y Z  Hu Y  Liu Y X 《农业工程》2009,29(6):320-326
A pot experiment was conducted to evaluate the bioaccumulation of heavy metals and growth response of rice plants after exposure to single and combined contamination by Cu, Cd and Pb. The results showed that the biomass production was not significantly affected by either single or combined treatment of Cu, Cd and Pb. Adding Cu (Cd, or Pb) separately all increased concentrations of the respective element in root and shoot (p < 0.001). In the combined contamination, Pb promoted both root and shoot absorption of Cu and Cd (p < 0.001), and Cu affected Cd and Pb absorption in the root, but Pb concentrations in both root and shoot were not affected by Cd application. The formation of iron plaques varied obviously with soil types. Heavy metal accumulation in iron plaques was induced by the three elements (p < 0.001). Furthermore, the three heavy metals exhibited an interactive relationship as measured by the Cu, Cd, Pb and Fe concentrations in root surface iron plaques. The iron plaques partially inhibited transfer of Pb to root and shoot, but no such effect was observed for Cu and Cd. This research indicates that the interaction among different heavy metal elements is very complex. It is very important to have a clear understanding on the associated mechanism and the consequential impact on plant growth.  相似文献   

11.
The effects of multi-wall carbon nanotubes (MWCNTs) on plant growth and Cd/Pb accumulation was investigated on seedlings of three plant species including Brassica napus L., Helianthus annus L. and Cannabis sativa L. The experiment consisted of MWCNTs on three concentration levels (0, 10, 50 mg/L) and 200 μM CdCl2 or 500 μM Pb(NO3)2. MWCNTs application effectively improved root and shoot growth inhibited by Cd and Pb salts. In B. napus, total chlorophyll (Chl) content increased by both MWCNTs 10 and 50 mg/L exposure under cadmium or lead stress. MWCNT 10 mg/L mitigated the deleterious effects of Cd ions on total chlorophyll content of H. annus and C. sativa. Wherease higher concentration of MWCNTs decreased Chl content under either Cd or Pb treatments on sunflower seedlings. MWCNT10 effectivly raised cadmium accumulation in seedlings of all three species. MWCNT10 and 50 mg/L also caused higher Pb accumulation in canola and cannabis seedlings, respectively. Based on the results, it seems that the effects of MWCNTs on growth parameters and heavy metal accumulation in plant seedlings is strongly depends on heavy metal type, MWCNTs concentration and plant species.  相似文献   

12.
Rice (Oryza sativa L.) seedlings were treated with different concentrations of copper (Cu) either in presence or absence of zinc (Zn), and different events were investigated to evaluate the ameliorative effect of Zn on Cu stress. In presence of high Cu concentration, growth of both root and shoots were considerably reduced. Decline in elongation and fresh mass was observed in root and shoot. Zn alone did not show any considerable difference as compared to control, but when supplemented along with high concentration Cu, it prompted the growth of both root and shoot. After 7 days, root growth was 9.36 and 9.59 cm, respectively, at 200 and 500 μM of Cu alone as compared to 10.59 and 12.26 cm at similar Cu concentrations, respectively, in presence of Zn. Cu accumulation was considerably high after 7 days of treatment. In absence of Zn, significant accumulation of Cu was observed. Zn supplementation ameliorated the toxic impact of Cu and minimized its accumulation. Cu treatment for 1 and 7 days resulted in a dose-dependent increase in hydrogen peroxide (H2O2). When Cu was added in presence of Zn, the H2O2 production in root and shoot was reduced significantly. The increase in H2O2 production under Cu stress was accompanied by augmentation of lipid peroxidation. In absence of Zn, Cu alone enhanced the malondialdehyde (MDA) production in both root and shoot after 1 and 7 days of treatment. The MDA content drastically reduced in root and shoot as when Zn was added during Cu treatment. The activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and guaiacol peroxidase (GPX) were elevated under Cu stress both in root and shoot. Addition of Zn further stimulated the activities of these enzymes. Both ascorbate (AsA) and glutathione (GSH) contents were high under Cu stress either in presence or absence of Zn. The results suggests that Zn supplementation improves plant survival capacity under high Cu stress by modulating oxidative stress through stimulation of antioxidant mechanisms and restricts the accumulation of toxic concentrations of Cu.  相似文献   

13.
Rattan Lal 《Plant and Soil》1974,40(3):589-606
Summary The effect of constant and fluctuating soil temperature and two soil moisture regimes on the growth, development, transpiration and nutrient uptake by maize seedlings was studied in a greenhouse investigation. The constant root temperatures were maintained at 30, 34, 35, 36, 37, and 38°C for both 250 and 750 cm of soil moisture suctions. The fluctuating root temperature, for 250 cm of soil moisture suction only, of 30–35, 30–39, 30–40, 30–45 and 30–48°C were maintained to simulate the soil temperature regime under field conditions. The constant root temperature of 35°C and fluctuating temperature between 30–40°C significantly decreased the shoot and root growth and transpiration rate. On the average, there was 1.3 and 0.7 g decrease in fresh shoot weight and 0.36 and 0.30 g in fresh root weight per degree increase in root temperature for 250 and 750 soil moisture suction, respectively. In general, the effect of high soil moisture suction on maize seedlings was more severe when at high root temperature. The shoot and root concentration of N, P, and K decreased while that of B increased with increase in root temperature. The root concentration of Zn also decreased with increase in root temperature.  相似文献   

14.
The effects of Cu2+, Zn2+, Cd2+ and Pb2+ on growth and the biochemical characteristics of photosynthesis were more expressed in barley (Hordeum vulgare L.) than in maize (Zea mays L.) seedlings. The barley and maize seedlings exhibited retardation in shoot and root growth after exposure of Cu2+, Cd2+ and Pb2+. The Zn2+ions practically did not influence these characteristics. The total protein content of barley and maize roots declined with an increase in heavy metal ion concentrations. The protein content of barley shoots was only slighly decreased with an increase in heavy metal ion concentrations, but the protein content in maize shoots was increased under the same conditions. The chlorophyll content was decreased in barley shoots and increased in maize. The ribulose-l,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were decreased drastically by Cu2+, Cd2+ and Pb2+ in thein vivo experiments. The tested heavy metal ions affect photosynthesis probably mainly by inhibition of these key carboxylating enzymes: this mechanism was studied in thein vitro experiments.  相似文献   

15.
Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 μM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 μM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 μM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions.  相似文献   

16.
《Aquatic Botany》1987,27(2):127-138
Greenhouse and growth chamber studies were conducted to evaluate growth and N utilization by Typha latifolia L. in flooded organic soil under varying temperatures and rates of N additions. Elevation of temperature from 10 to 25°C increased shoot biomass yields by 275%. Root biomass yields were lowest at 10°C and increased linearly as a function of temperature. Shoot/root ratios were low (0.72–0.82) at lower temperatures (10–15°C) and ratios increased by about three times at higher temperatures (20–30°C). Biomass yields were increased by addition of N fertilizers, while the shoot/root ratios were directly related to plant-available N present in the soil.Fertilizer 15N uptake (expressed as % of applied N) by the whole plant was 5.3% at 10°C, 37.5% at 20°C and at 30°C decreased to 20.8%. Fertilizer N accumulation in shoots was 2.1–29.8% of applied N, while roots accumulated 3.2–7.7%. Under greenhouse conditions, N uptake by T. latifolia was found to increase with increased rate of N application. Fertilizer N uptake by both shoots and roots was in the range of 61–77%. Plants cultured in growth chambers were affected by low light conditions resulting in poor growth and low fertilizer 15N uptake, as compared to plants grown under greenhouse conditions. Added fertilizer N was the major source of N during the early part of the growing season, while soil organic N was the major and perhaps the sole source of N during the latter part of the growing season.  相似文献   

17.
Cu contamination soil (547 mg kg–1) was mixed separately with the surface-modified nano-scale carbon black (MCB) and placed in the ratios (w/w) of 0, 1%, 3%, and 5% in pots, together with 0.33 g KH2PO4and 0.35 g urea/pot. Each pot contained 20 ryegrass seedlings (Lolium multiflorum). Greenhouse cultivation experiments were conducted to examine the effect of the MCB on Cu and Zn fractionations in soil, accumulation in shoot and growth of ryegrass. The results showed that the biomass of ryegrass shoot and root increased with the increasing of MCB adding amount (p < 0.05). The Cu and Zn accumulation in ryegrass shoot and the concentrations of DTPA extractable Cu and Zn in soil were significantly decreased with the increasing of MCB adding amount (p < 0.05). The metal contents of exchangeable and bound to carbonates (EC-Cu or EC-Zn) in the treatments with MCB were generally lower than those without MCB, and decreased with the increasing of MCB adding amount (p < 0.05). There was a positive linear correlation between the Cu and Zn accumulation in ryegrass shoot and the EC-Cu and EC-Zn in soil. The present results indicated the MCB could be applied for the remediation the soils polluted by Cu and Zn.  相似文献   

18.
The protective function of a plant type-2 metallothionein was analysed after expression in Escherichia coli and in Arabidopsis thaliana seedlings. BjMT2 from Brassica juncea was expressed in E. coli as a TrxABjMT2 fusion protein. After affinity chromatography and cleavage from the TrxA domain, pure BjMT2 protein was obtained which strongly reacted with the thiol reagent monobromobimane. Escherichia coli cells expressing the TrxABjMT2 fusion were more tolerant to Cu2+ and Cd2+ exposure than control strains. Likewise, when BjMT2 cDNA was expressed in A. thaliana under the regulation of the 35S promoter, seedlings exhibited an increased tolerance against Cu2+ and Cd2+ based on shoot growth and chlorophyll content. Analysis of transiently transformed cells of A. thaliana and tobacco leaves by confocal laser scanning microscopy (CLSM) revealed exclusive cytosolic localization of a BjMT2::EGFP (enhanced green fluorescent protein) fusion protein in control and heavy metal-exposed plant cells. Remarkably, ectopic expression of BjMT2 reduced root growth in the absence of heavy metal exposure, whereas in the presence of 50 or 100 microM Cu2+ root growth in control and transgenic lines was identical. The results indicate that in A. thaliana, root and shoot development are differentially affected by ectopic expression of BjMT2.  相似文献   

19.
Gamma-aminobutryric acid (GABA) accumulation in response to diverse stresses is well known in plants; however, the comparative effects of different environmental stresses on GABA accumulation was not addressed in the same plant system. Here, we investigated GABA accumulation comparatively in sesame (Sesamum indicum L. cv. Cumhuriyet) plant under drought, salt, heavy metal (Se) and high-temperature stresses. Plants were stressed by application of 5% PEG-6000, 150 mM NaCl, 100 μg g−1 Se and high temperature (50°C for 2 h). Root and shoot growth reduced after PEG, NaCl, Se and high-temperature treatments. Among these, heavy metal treatment had the highest and earliest effect on growth. GABA accumulation could be related to stress perception rather than protection in sesame plant if we consider that the adverse effects of different abiotic stresses on growth were not elevated by GABA.  相似文献   

20.
Maize seedlings ( Zea mays L. cv. DK 246) grown for 1–4 days in the presence of abscisic acid (ABA) or triadimefon (a fungicide) demonstrated an enhanced ability to withstand the effects of a 3-h sub-lethal (40°C) or lethal (45°C) heat shock. Both the ABA and triadimefon treatments were applied solely to the roots of seedlings; however, the ability to withstand a heat shock was induced in both the root and the shoot. The level of protection provided by these agents was dependent upon the time that plants were exposed to them; prolonged exposure reduced tolerance to subsequent stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号