首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
2.
Physiological parameters such as viability, gross RNA synthesis,β-galactosidase induction, development of phages T4, T7 andλ have been studied in temperature-sensitiveEscherichia coli strains harbouring fit A76,fit A24 andfit A76fit A24 mutations in rpoB+ andrpoB240 genetic backgrounds. The efficiently of expression of these functions is influenced by thefit A alleles depending upon the medium of growth and/or temperature. Strains harbouring therpoB240 mutation and thefit A76 mutation, either alone or together with thefit A24 mutation, are rifampicin-sensitive even at the perfssive temperature. The results suggest possible interaction between thefit A gene product and RNA polymerase invivo. This paper is dedicated to Proof. S. Krishnaswamy on his Sixty First Birthday.  相似文献   

3.
4.
5.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes theβ subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

6.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

7.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

8.
9.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes the subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

10.
The geneshsdM andhsdS for M.EcoKI modification methyltrasferase and the complete set ofhsdR,hsdM andhsdS genes coding for R.EcoKI restriction endonuclease, both with and without a temperature-sensitive (ts) mutation inhsdS gene, were cloned in pBR322 plasmid and introduced intoE. coli C (a strain without a natural restriction-modification (R-M) system). The strains producing only the methyltransferase, or together with the endonuclease, were thus obtained. ThehsdS ts-1 mutation, mapped previously in the distal variable region of thehsdS gene with C1 245-T transition has no effect on the R-M phenotype expressed from cloned genes in bacteria grown at 42°C. In clones transformed with the wholehsd region an alleviation of R-M functions was observed immediately after the transformation, but after subculture the transformants expressed the wild-type R-M phenotype irrespective of whether the wild-type or the mutanthsdS allele was present in the hybrid plasmid. Simultaneous overproduction of HsdS and HsdM subunits impairs the ts effect of thehsdS ts-1 mutation on restriction and modification.  相似文献   

11.
12.
13.
We have previously reported that the MukB protein is essential for chromosome partitioning inEscherichia coli and thatmukB mutants produce anucleate cells and are temperature-sensitive for colony formation. ThemukB gene maps at 21 min on theE. coli chromosome andsmtA-mukF-mukE-mukB genes might comprise an operon, which is transcribed in a clockwise direction. Here, we report thatmukF andmukE null mutants are both temperature-sensitive for colony formation and produce anucleate cells even at the permissive temperature. These phenotypes are the same as those observed in themukB null mutant. The primary sequence of MukF includes a leucine zipper structure and an acidic domain. Mutational analysis revealed that both are required for MukF function. When the MukF protein was overproduced in the wild-type strain, anucleate cells were produced. In contrast, overproduction of either MukE or MukB did not cause the defect. In null mutants for themukF, mukE, andmukB genes, the synchronous initiation of chromosome replication was not affected. The mini-F plasmid was as stably maintained in these mutants as in the wild-type strain. These results indicate that the MukF, MukE, and MukB proteins are involved in the chromosome partitioning steps, but are not required for mini-F plasmid partitioning.  相似文献   

14.
Constitutive stable DNA replication (cSDR), which uniquely occurs inEscherichia coli rnhA mutants deficient in ribonuclease HI activity, requires RecA function. TherecA428 mutation, which inactivates the recombinase activity but imparts a constitutive coprotease activity, blocks cSDR inrnhA mutants. The result indicates that the recombinase activity of RecA, which promotes homologous pairing and strand exchange, is essential for cSDR. Despite the requirement for RecA recombinase activity, mutations inrecB, recD, recJ, ruvA andruvC neither inhibit nor stimulate cSDR. It was proposed that the property of RecA essential for homologous pairing and strand exchange is uniquely required for initiation of cSDR inrnhA mutants without involving the homologous recombination process. The possibility that RecA protein is necessary to counteract the action of Tus protein, a contra-helicase which stalls replication forks in theter region of the chromosome, was ruled out because introduction of thetus : :kan mutation, which inactivates Tus protein, did not alleviate the RecA requirement for cSDR.  相似文献   

15.
16.
17.
Further studies on theisfA mutation responsible for anti-SOS and antimutagenic activities inEscherichia coli are described. We have previously shown that theisfA mutation inhibits mutagenesis and other SOS-dependent phenomena, possibly by interfering with RecA coprotease activity. TheisfA mutation has now been demonstrated also to suppress mutator activity inE. coli recA730 andrecA730 lexA51(Def) strains that constitutively express RecA coprotease activity. We further show that the antimutator activity of theisfA mutation is related to inhibition of RecA coprotease-dependent processing of UmuD. Expression of UmuD' from plasmid pGW2122 efficiently restores UV-induced mutagenesis in therecA730 isfA strain and partially restores its mutator activity. On the other hand, overproduction of UmuD'C proteins from pGW2123 plasmid markedly enhances UV sensitivity with no restoration of mutability.  相似文献   

18.
19.
A conditional-lethal mutation (rpoB364) mapping to the gene that encodes the β-subunit of RNA polymerase was obtained inEscherichia coli. This mutation caused cell filamentation at the restrictive growth temperature and partial derepression of the osmotically regulatedproU operon at the permissive growth temperature. Even under the latter condition, transformants of therpoB364 mutant strain carrying the plasmid vector pACYC184, but not those carrying otherpolA-dependent multicopy plasmids such as pACYC177 or pBR322, were killed in early stationary phase; one class of suppressor mutants isolated as survivors within these transformant colonies were further derepressed forproU-lac expression, and the mutation in each of several independent clones of this class was mapped tohns, the gene that encodes the protein H-NS of theE. coli nucleoid. Thehns mutations did not suppress the conditional-lethal growth phenotype of therpoB364 mutant itself. On the other hand, intracellular overproduction of guanosine 3’, 5’-bispyrophosphate (ppGpp) in therpoB364 strain alleviated both the growth inhibition at the restrictive temperature and the pACYC184-mediated stationary-phase lethality. Upon subcloning into pUC19 or into pACYC177, a 105-bpXbal-HindIII fragment from pACYC184 was shown to be sufficient to confer therpoB364 hns +-dependent lethal phenotype. We suggest that the level in stationary-phase cultures of a gene product(s) that interacts with the pACYC184 DNA fragment is altered in therpoB364 hns+derivative (compared to that inrpoB+ orrpoB364 hns strains) and that this results in cell suicide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号