首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibacterial activity of four local anaesthetics (LAs), amethocaine and procaine (esters), and cinchocain and lignocaine (amides), has been studied. All four LAs inhibited cell growth but only amethocaine and cinchocain had significant effects on cell viability and on the leakage of cellular constituents. Effects on growth inhibition were reversible. Concentrations causing marked loss in viability also caused the leakage of cellular constituents. Uptake isotherms for all four LAs by E. coli are presented and an attempt made to relate derived intracellular LA levels with effects on growth inhibition. Cultures of E. coli grown in the presence of low levels of LAs effects reflecting the relative hydrophilic-lipophilic nature of the individual LAs.  相似文献   

2.
Mitochondria play an important role in apoptosis by generating reactive oxygen species (ROS) and inducing membrane permeability transition (MPT). Recent studies on alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid, suggest that these agents (LAs) inhibit apoptosis of cells by means of their antioxidant activity. On the other hand, LAs also stimulate Ca2+-dependent mitochondrial MPT and induce apoptosis of certain cells. Thus, the role of LAs in apoptotic cell death remains obscure. We investigated the mechanism of LA-induced MPT of mitochondria. Biochemical analysis revealed, in the presence of Ca2+, inorganic phosphate and succinate, LA induced uncoupling of oxidative phosphorylation, stimulated oxidation of pyridine nucleotides and enhanced Ca2+-induced MPT, as characterized by decrease in Ca2+ loading, ROS generation, oxidation of thiol groups of adenine nucleotide translocator, membrane depolarization, swelling, and cytochrome c release in an incubation time and concentration dependent manner. LA also stimulated hydroxyl radical-induced MPT in a alpha-tocopherol-inhibitable manner. Cyclosporine A, a potent inhibitor of mitochondrial MPT, inhibited all these events induced by LA. These results indicate that, under certain conditions, LA stimulates Ca2+-induced MPT through the decrease in loading capacity of Ca2+ and that MPT is involved in LA-induced apoptotic cell death. Since fairly high doses of LA have been used as a dietary supplement, the possible occurrence of such side effects, including mitochondrial dysfunction and induction of apoptosis in normal tissues, should be studied.  相似文献   

3.
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.  相似文献   

4.

Cells in the white matter of the adult brain have a characteristic distribution pattern in which several cells are contiguously connected to each other, making a linear array (LA) resembling pearls-on-a-string parallel to the axon axis. We have been interested in how this pattern of cell distribution changes during aging and remyelination after demyelination. In the present study, with a multiplex staining method, semi-quantitative analysis of the localization of oligodendrocyte lineage cells (oligodendrocyte progenitors, premyelinating oligodendrocytes, and mature oligodendrocytes), astrocytes, and microglia in 8-week-old (young adult) and 32-week-old (aged) corpus callosum showed that young adult cells still include immature oligodendrocytes and that LAs contain a higher proportion of microglia than isolated cells. In aged mice, premyelinating oligodendrocytes were decreased, but microglia continued to be present in the LAs. These results suggest that the presence of microglia is important for the characteristic cell localization pattern of LAs. In a cuprizone-induced demyelination model, we observed re-formation of LAs after completion of cuprizone treatment, concurrent with remyelination. These re-formed LAs again contained more microglia than the isolated cells. This finding supports the hypothesis that microglia contribute to the formation and maintenance of LAs. In addition, regardless of the distribution of cells (LAs or isolated cells), astrocytes were found to be more abundant than in the normal corpus callosum at 24 weeks after cuprizone treatment when remyelination is completed. This suggests that astrocytes are involved in maintaining the functions of remyelinated white matter.

  相似文献   

5.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by (31)P and (1)H magic-angle spinning (MAS) NMR spectroscopy. The (31)P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

6.
Growing evidence suggests that α-lipoic acid (LA) has neuroprotective effects in various pathological conditions including brain ischemia and neurodegeneration. While anti-oxidative activity has been thought to play a central role in LA-mediated neuroprotection, the precise mechanism and the effect of LA enantiomers (R- and S-LA) are not fully clarified. We, therefore, estimated the neuroprotective effects of LA against different cellular stresses including oxidative stress, endoplasmic reticulum (ER) stress and proteolytic stress using human neuroblastoma SH-SY5Y cells. All types of LAs (racemate, R-LA and S-LA) most effectively prevented cell death induced by buthionine sulfoximine (BSO) which depletes intracellular glutathione. Although direct effects of LA on glutathione depletion or generation of the reactive oxygen species (ROS) were relatively small upon BSO treatment, LA enhanced expressions of anti-oxidative genes such as heme oxygenase-1 (HO-1) and phase II detoxification enzymes such as NAD(P)H:Quinone Oxidoreductase 1 (NQO1). An inhibitor of NQO1, but not that of HO-1, suppressed LA-mediated protection against BSO. Further experiments revealed that all types of LAs activated cell survival-associated kinase Akt, and an inhibitor of PI3K, LY294002, suppressed both LA-induced upregulation of NQO1 and cell protection against BSO. Our results suggest an important role of PI3K/Akt-mediated upregulation of genes including phase II enzymes such as NQO1 in LA-mediated neuroprotection.  相似文献   

7.
The membrane location of the local anesthetics (LA) lidocaine, dibucaine, tetracaine, and procaine hydrochloride as well as their influence on phospholipid bilayers were studied by 31P and 1H magic-angle spinning (MAS) NMR spectroscopy. The 31P NMR spectra of the LA/lipid preparations confirmed that the overall bilayer structure of the membrane remained preserved. The relation between the molecular structure of the LAs and their membrane localization and orientation was investigated quantitatively using induced chemical shifts, nuclear Overhauser enhancement spectroscopy, and paramagnetic relaxation rates. All three methods revealed an average location of the aromatic rings of all LAs in the lipid-water interface of the membrane, with small differences between the individual LAs depending on their molecular properties. While lidocaine is placed in the upper chain/glycerol region of the membrane, for dibucaine and procaine the maximum of the distribution are slightly shifted into the glycerol region. Finally for tetracaine the aromatic ring is placed closest to the aqueous phase in the glycerol/headgroup region of the membrane. The hydrophobic side chains of the LA molecules dibucaine and tetracaine were located deeper in the membrane and showed an orientation towards the hydrocarbon core. In contrast the side chains of lidocaine and procaine are oriented towards the aqueous phase.  相似文献   

8.
A variety of amphiphilic cations caused very large increases in the rates of incorporation of Pi and glycerol into phosphatidylinositol in pig mesenteric small lymphocytes. This synthesis de novo of phosphatidylinositol led to a doubling of the phosphatidylinositol concentration in the cells within 3.5 h. The increase in synthesis of phosphatidylinositol labelled with [3H]- or [14C]-glycerol was matched by an approximately equivalent decrease in incorporation of glycerol into phosphatidylcholine, phosphatidylethanolamine and triacylglycerol. Amphilic cations which produced these effects included, in order of decreasing effectiveness, trifluoperazine (half-maximal effect at about 70 mum) greater than chlorpromazine approximately promethazine approximately imipramine greater than cinchocaine greater than amethocaine approximately cetyltrimethylammonium greater than fenfluramine greater than amphetamine greater than 2-phenethylamine greater than cocaine approximately procaine; the most effective compounds were those with the largest and most hydrophobic non-polar substituents. The response to cations was not changed by varying the extracellular Ca2+ concentration in the range 10 nm-1mm. The active amphiphilic cations interacted with anionic phospholipids causing aggregation of aqueous dispersions and/or changes in chromatographic behaviour. These results indicate that amphiphilic cations redirect glycerolipid synthesis de novo, probably owing to inhibition of phosphatidate phosphohydrolase, so that phosphatidylinositol synthesis is increased at the expense of other glycerolipids.  相似文献   

9.
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells), which was identified in human breast milk as an alpha-lactalbumin (LA)-oleic acid complex, kills tumor cells, selectively. Although it may have potential as a therapeutic agent against various tumor cells, only low-volume methods for its production exist. In this study, heat treatment was used to produce complexes from LAs and oleic acid using a simple method. In the case of human LA and oleic acid, heat-treated samples apparently showed much stronger activities than those treated at room temperature, with cytotoxicities equal to that of HAMLET. Furthermore, circular dichroism spectroscopy revealed that heat-treated samples lost their tertiary structure, suggesting a molten globule as oleic acid-bound LA. BLA samples also showed strong activities by heat treatment. Batch production with heat treatment can efficiently convert LAs into tumoricidal complexes.  相似文献   

10.
Voltage-gated Na+ channels are dynamic transmembrane proteins responsible for the rising phase of the action potential in excitable membranes. Local anesthetics (LAs) and structurally related antiarrhythmic and anticonvulsant compounds target specific sites in voltage-gated Na+ channels to block Na+ currents, thus reducing excitability in neuronal, cardiac, or central nervous tissue. A high-affinity LA block is produced by binding to open and inactivated states of Na+ channels rather than to resting states and suggests a binding site that converts from a low- to a high-affinity conformation during gating. Recent findings using site-directed mutagenesis suggest that multiple S6 segments together form an LA binding site within the Na+ channel. While the selectivity filter may form the more extracellular-located part of this binding site, the role of the fast inactivation gate in LA binding has not yet been resolved. The receptor of the neurotoxin batrachotoxin (BTX) is adjacent to or even overlaps with the LA binding site. The close proximity of the LA and BTX binding sites to residues critical for inactivation, together with gating transitions through S6 segments, might explain the strong impact of LAs and BTX on inactivation of voltage-gated Na+ channels and might help elucidate the mechanisms underlying voltage- and frequency-dependent LA block.  相似文献   

11.
Cocaine and lidocaine are local anesthetics (LAs) that block Na currents in excitable tissues. Cocaine is also a cardiotoxic agent and can induce cardiac arrhythmia and ventricular fibrillation. Lidocaine is commonly used as a postinfarction antiarrhythmic agent. These LAs exert clinically relevant effects at concentrations that do not obviously affect the normal function of either nerve or skeletal muscle. We compared the cocaine and lidocaine affinities of human cardiac (hH1) and rat skeletal (mu 1) muscle Na channels that were transiently expressed in HEK 293t cells. The affinities of resting mu 1 and hH1 channels were similar for cocaine (269 and 235 microM, respectively) and for lidocaine (491 and 440 microM, respectively). In addition, the affinities of inactivated mu 1 and hH1 channels were also similar for cocaine (12 and 10 microM, respectively) and for lidocaine (19 and 12 microM, respectively). In contrast to previous studies, our results indicate that the greater sensitivity of cardiac tissue to cocaine or lidocaine is not due to a higher affinity of the LA receptor in cardiac Na channels, but that at physiological resting potentials (-100 to -90 mV), a greater percentage of hH1 channels than mu 1 channels are in the inactivated (i.e., high-affinity) state.  相似文献   

12.
Wang SY  Nau C  Wang GK 《Biophysical journal》2000,79(3):1379-1387
Batrachotoxin (BTX) alters the gating of voltage-gated Na(+) channels and causes these channels to open persistently, whereas local anesthetics (LAs) block Na(+) conductance. The BTX and LA receptors have been mapped to several common residues in D1-S6 and D4-S6 segments of the Na(+) channel alpha-subunit. We substituted individual residues with lysine in homologous segment D3-S6 of the rat muscle mu1 Na(+) channel from F1274 to N1281 to determine whether additional residues are involved in BTX and LA binding. Two mutant channels, mu1-S1276K and mu1-L1280K, when expressed in mammalian cells, become completely resistant to 5 microM BTX during repetitive pulses. The activation and/or fast inactivation gating of these mutants is substantially different from that of wild type. These mutants also display approximately 10-20-fold reduction in bupivacaine affinity toward their inactivated state but show only approximately twofold affinity changes toward their resting state. These results demonstrate that residues mu1-S1276 and mu1-L1280 in D3-S6 are critical for both BTX and LA binding interactions. We propose that LAs interact readily with these residues from D3-S6 along with those from D1-S6 and D4-S6 in close proximity when the Na(+) channel is in its inactivated state. Implications of this state-dependent binding model for the S6 alignment are discussed.  相似文献   

13.
Light-induced peroxidation of polyunsaturated fatty acids (PUFA) may generate lipid hydroperoxides, which may have toxic effects on retinal pigment epithelial (RPE) cells in vitro. We investigated the effects of cool-white fluorescent light on the RPE cells incubated with linoleic acids (LA) or linoleic acid hydroperoxides (LHP) and the influence of antioxidative enzymes. We measured the bovine RPE cell number after exposure to fluorescent light (610 and 1,200 lux) in the presence of LA or LHP. Furthermore, the effects of superoxide dismutase (SOD) and catalase on LA- or LHP-treated RPE cells were also examined. Both LA and LHP treatment increased RPE cell number under weak illumination (610 lux), but dose-dependently decreased the number of cells exposed to strong illumination (1,200 lux). With exposure to strong illumination, LA caused a greater reduction in RPE cell number than LHP. Multiple linear regression analysis showed that the number of RPE cells was significantly decreased in a manner dependent on the interactions of the illuminance of light and the concentrations of LA or LHP. The antioxidative enzymes significantly ameliorated the damage to RPE cells from LA or LHP and exposure to light. Therefore, the exposure to fluorescent light augmented the cytotoxic effects of LA and LHP on RPE cells, and this effect is likely to be mediated by reactive oxygen species.  相似文献   

14.
Light-induced peroxidation of polyunsaturated fatty acids (PUFA) may generate lipid hydroperoxides, which may have toxic effects on retinal pigment epithelial (RPE) cells in vitro. We investigated the effects of cool-white fluorescent light on the RPE cells incubated with linoleic acids (LA) or linoleic acid hydroperoxides (LHP) and the influence of antioxidative enzymes. We measured the bovine RPE cell number after exposure to fluorescent light (610 and 1,200 lux) in the presence of LA or LHP. Furthermore, the effects of superoxide dismutase (SOD) and catalase on LA- or LHP-treated RPE cells were also examined. Both LA and LHP treatment increased RPE cell number under weak illumination (610 lux), but dose-dependently decreased the number of cells exposed to strong illumination (1,200 lux). With exposure to strong illumination, LA caused a greater reduction in RPE cell number than LHP. Multiple linear regression analysis showed that the number of RPE cells was significantly decreased in a manner dependent on the interactions of the illuminance of light and the concentrations of LA or LHP. The antioxidative enzymes significantly ameliorated the damage to RPE cells from LA or LHP and exposure to light. Therefore, the exposure to fluorescent light augmented the cytotoxic effects of LA and LHP on RPE cells, and this effect is likely to be mediated by reactive oxygen species.  相似文献   

15.
Local anesthetics (LAs) are compounds that inhibit the propagation of action potentials in excitable tissues by blocking voltage-gated Na+ channels. Mutagenesis studies have demonstrated that several amino acid residues are important sites of LA interaction with the channel, but these studies provide little information regarding the molecular forces that govern drug-binding interactions, including the binding orientation of drugs. We used computational methods to construct a simple model of benzocaine analog binding with the D4S6 segment of rat skeletal muscle (NaV4.1) sodium channels. The model revealed that four hydrophobic residues form a binding cavity for neutral LAs, and docking studies indicated that increasing hydrophobicity among the benzocaine analogs allowed a better fit within the binding cavity. The similarities between our simple model and published experimental data suggested that modeling of LA interactions with sodium channels, along with experimental approaches, could further enhance our understanding of LA interactions with sodium channels.  相似文献   

16.
Local anesthetics (LAs) are drugs that cause reversible loss of nociception during surgical procedures. Articaine is a commonly used LA in dentistry that has proven to be exceptionally effective in penetrating bone tissue and induce anesthesia on posterior teeth in maxilla and mandibula. In the present study, our aim was to gain a deeper understanding of the penetration of articaine through biological membranes by studying the interactions of articaine with a phospholipid membrane. Our approach involves Langmuir monolayer experiments combined with molecular dynamics simulations. Membrane permeability of LAs can be modulated by pH due to a titratable amine group with a pKa value close to physiological pH. A change in protonation state is thus known to act as a lipophilicity switch in LAs. Our study shows that articaine has an additional unique lipophilicity switch in its ability to form an intramolecular hydrogen bond. We suggest this intramolecular hydrogen bond as a novel and additional solvent-dependent mechanism for modulation of lipophilicity of articaine which may enhance its diffusion through membranes and connective tissue.  相似文献   

17.
Local anesthetics (LAs) block voltage-gated Na+ channels in excitable cells, whereas batrachotoxin (BTX) keeps these channels open persistently. Previous work delimited the LA receptor within the D4-S6 segment of the Na+ channel alpha-subunit, whereas the putative BTX receptor was found within the D1-S6. We mutated residues at D4-S6 critical for LA binding to determine whether such mutations modulate the BTX phenotype in rat skeletal muscle Na+ channels (mu1/rSkm1). We show that mu1-F1579K and mu1-N1584K channels become completely resistant to 5 microM BTX. In contrast, mu1-Y1586K channels remain BTX-sensitive; their fast and slow inactivation is eliminated by BTX after repetitive depolarization. Furthermore, we demonstrate that cocaine elicits a profound time-dependent block after channel activation, consistent with preferential LA binding to BTX-modified open channels. We propose that channel opening promotes better exposure of receptor sites for binding with BTX and LAs, possibly by widening the bordering area around D1-S6, D4-S6, and the pore region. The BTX receptor is probably located at the interface of D1-S6 and D4-S6 segments adjacent to the LA receptor. These two S6 segments may appose too closely to bind BTX and LAs simultaneously when the channel is in its resting closed state.  相似文献   

18.
This study examined the effects of linoleic acid (LA) and gamma-linolenic acid (GLA) on BL6 melanoma growth in cell culture and of safflower oil (SFO) which contains LA and evening primrose oil (EPO) which contains GLA, on melanoma growth when grown in mice. The delta-6-desaturase activity of the melanoma cells in the two systems was also examined and an attempt made to relate the activity of the enzyme to the effects of GLA on cell and tumour growth. LA and GLA were found to be equipotent in inhibiting growth of the in vitro cultured BL6 cells which were found to contain an appreciable level of delta-6-desaturase activity. EPO was however found to be a more potent promoter of in vivo melanoma growth in mice than SFO. Melanomas grown in mice were found to lack delta-6-desaturase activity suggesting that the EPO diet, by providing GLA, was able to compensate for the loss of enzyme activity in the melanomas. The possibility that melanomas in mice have a requirement for GLA for growth while in in vitro cultured cells excess GLA inhibits the growth of the cells through an increase in lipid peroxidation is discussed.  相似文献   

19.
This study was performed to elucidate the effects of linoleic acid (LA), oleic acid (OA) and their combination (LA?+?OA) on cell proliferation, apoptosis, necrosis, and the lipid metabolism related gene expression in bovine satellite cells (BSCs), isolated from bovine muscles. Cell viability was significantly increased with the OA and LA treatment. Furthermore, LA?+?OA enhanced cell proliferation in a dose-dependent manner (10 to 100?µM), whereas it lowered at 250?µM. In addition, a cell-cycle analysis showed that 100?µM of LA and OA markedly decreased the G0/G1 phase proportion (62.58% and 61.33%, respectively), compared to controls (68.02%), whereas the S-phase cells’ proportion was increased. The ratio of G2/M phase cells was not significantly different among the groups. Moreover, analyses with AO/EtBr staining showed that no apoptosis occurred. Necrosis were determined by flow cytometry using Annexin V-FITC/PI staining which revealed no early apoptosis in the cells pretreated with LA or OA, but occurred in the LA?+?OA group. We also analyzed the mRNA expression of lipid metabolizing genes such as peroxisome proliferator receptor alfa (PPARα), peroxisome proliferator receptor gamma (PPARγ), acyl-CoA oxidase (ACOX), lipoprotein lipase (LPL), carnitine palmitoyl transferase (CPT-1), and fatty-acid binding protein4 (FABP4), which were upregulated in LA or OA treated cells compared to the control group. In essence, LA and OA alone promote the cell proliferation without any apoptosis and necrosis, which might upregulate the lipid metabolism related gene expressions, and increase fatty-acid oxidation in the BSCs’ lipid metabolism.  相似文献   

20.
Oxidative stress with subsequent lipid peroxidation has been postulated as one mechanism for lead toxicity. Hence in assessing the protective effects of lipoic acid (LA) and meso 2,3-dimercaptosuccinic acid (DMSA) on lead toxicity, they were tested either separately or in combination for their effects on selected indices of hepatic oxidative stress. Elevated levels of lipid peroxides were accompanied by altered antioxidant defense systems. Lead acetate (Pb - 0.2%) was administered in drinking water for five weeks to induce toxicity. LA (25 mg kg(-1) body wt. day(-1) i.p) and DMSA (20 mg kg(-1) body wt. day(-1) i.p) were administered individually and also in combination during the sixth week. Lead damage to the liver was evident in the decreases in hepatic enzymes alanine transaminase (-38%), aspartate transaminase (-42%) and alkaline phosphatase (-43%); increases in lipid peroxidation (+38%); decreases in the antioxidant enzymes catalase (-45%), superoxide dismutase (-40%), glutathione peroxidase (-46%) and decreases in glutathione (-43%) and decreases in glutathione metabolizing enzymes, glutathione reductase (-59%), glucose-6-phosphate dehydrogenase (-27%) and glutathione-S-transferase (-42%). In combination LA and DMSA completely ameliorated the lead induced oxidative damage. Either compound alone was however only partially protective against lead damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号