首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Critchley C 《Plant physiology》1981,67(6):1161-1165
Cucumber plants (Cucumis sativus L.), grown at low quantum flux density (120-150 microeinsteins per square meter per second) were photoinhibited by a three-hour exposure in air to ten times the light intensity experienced during growth. Chloroplasts were isolated from photoinhibited and control leaves and the following activities determined: O2 evolution in the presence of ferricyanide, photosystem I activity, noncyclic and cyclic photophosphorylation, and light-induced proton uptake. Chlorophyll and chloroplast absorbance spectra, and chloroplast fluorescence were also measured. It was found that photosystem II electron transport and non-cyclic photophosphorylation were inhibited by about 50%, while cyclic photophosphorylation was less inhibited and photosystem I electron transport and light-induced proton uptake were unaffected. Electron transport to methylviologen could not be fully restored by electron donation to photosystem II. Chloroplast fluorescence induction at room temperature was strongly reduced following photoinhibition. There was no difference in the absorption spectra of the extracted chlorophylls from control and photoinhibited chloroplasts, but an increase of the absorption in the blue wavelength region was observed in the photoinhibited chloroplasts. It is suggested that high light stress does not result in alteration of the membrane properties, as is the case in low-temperature stress for example, but affects directly the photosynthetic reaction centers, primarily of photosystem II.  相似文献   

2.
The effects of the tertiary amines tetracaine, brucine and dibucaine on photophosphorylation and control of photosynthetic electron transport in isolated chloroplasts of Spinacia oleracea were investigated. Tertiary amines inhibited photophosphorylation while the related electron transport decreased to the rates, observed under non-phosphorylating conditions. Light induced quenching of 9-aminoacridine fluorescence and uptake of 14C-labelled methylamine in the thylakoid lumen declined in parallel with photophosphorylation, indicating a decline of the transthylakoid proton gradient. In the presence of ionophoric uncouplers such as nigericin, no effect of tertiary amines on electron transport was seen in a range of concentration where photophosphorylation was inhibited. Under the influence of the tertiary amines tested, pH-dependent feed-back control of photosystem II, as indicated by energy-dependent quenching of chlorophyll fluorescence, was unaffected or even increased in a range of concentration where 9-aminoacridine fluorescence quenching and photophosphorylation were inhibited. The data are discussed with respect to a possible involvement of localized proton flow pathways in energy coupling and feed-back control of electron transport.Abbreviations 9-AA 9-aminoacridine - J e flux of photosynthetic electron transport - PC photosynthetic control - pH1 H+ concentration in the thylakoid lumen - pmf proton motive force - P potential quantum yield of photochemistry of photosystem II (with open reaction centers) - Q A primary quinone-type electron acceptor of photosystem II - q Q photochemical quenching of chlorophyll fluorescence - q E energy-dependent quenching of chlorophyll fluorescence - q AA light-induced quenching of 9-amino-acridine fluorescence  相似文献   

3.
Yocum CF 《Plant physiology》1977,60(4):597-601
A number of uncouplers and energy transfer inhibitors suppress photosystem II cyclic photophosphorylation catalyzed by either a proton/electron or electron donor. Valinomycin and 2,4-dinitrophenol also inhibit photosystem II cyclic photophosphorylation, but these compounds appear to act as electron transport inhibitors rather than as uncouplers. Only when valinomycin, KCl, and 2,4-dinitrophenol were added simultaneously to phosphorylation reaction mixtures was substantial uncoupling observed. Photosystem II noncyclic and cyclic electron transport reactions generate positive absorbance changes at 518 nm. Uncoupling and energy transfer inhibition diminished the magnitude of these absorbance changes. Photosystem II cyclic electron transport catalyzed by either p-phenylenediamine or N,N,N′,N′-tetramethyl-p-phenylenediamine stimulated proton uptake in KCN-Hg-NH2OH-inhibited spinach (Spinacia oleracea L.) chloroplasts. Illumination with 640 nm light produced an extent of proton uptake approximately 3-fold greater than did 700 nm illumination, indicating that photosystem II-catalyzed electron transport was responsible for proton uptake. Electron transport inhibitors, uncouplers, and energy transfer inhibitors produced inhibitions of photosystem II-dependent proton uptake consistent with the effects of these compounds on ATP synthesis by the photosystem II cycle. These results are interpreted as indicating that endogenous proton-translocating components of the thylakoid membrane participate in coupling of ATP synthesis to photosystem II cyclic electron transport.  相似文献   

4.
Yocum CF 《Plant physiology》1977,60(4):592-596
Incubation of KCN-Hg-NH2OH-inhibited spinach (Spinacia oleracea L.) chloroplasts with p-phenylenediamine for 10 minutes in the dark prior to illumination produced rates of photosystem II cyclic photophosphorylation up to 2-fold greater than the rates obtained without incubation. Partial oxidation of p-phenylenediaine with ferricyanide produced a similar stimulation of ATP synthesis; addition of dithiothreitol suppressed the stimulation observed with incubation. Addition of ferricyanide in amounts sufficient to oxidize completely p-phenylenediamine failed to inhibit completely photosystem II cyclic activity. This is due at least in part to the fact that the ferrocyanide produced by oxidation of p-phenylenediamine is itself a catalyst of photosystem II cyclic photophosphorylation. N,N,N′N′-Tetramethyl-p-phenylenediamine catalyzes photosystem II cyclic photophosphorylation at rates approaching those observed with p-phenylenediamine. The activities of both proton/electron and electron donor catalysts of the photosystem II cycle are inhibited by dibromothyoquinone and antimycin A. These findings are interpreted to indicate that photosystem II cyclic photophosphorylation requires the operation of endogenous membrane-bound electron carriers for optimal coupling of ATP synthesis to electron transport.  相似文献   

5.
Stomatal conductance is coupled to leaf photosynthetic rate over a broad range of environmental conditions. We have investigated the extent to which chloroplasts in guard cells may contribute to this coupling through their photosynthetic activity. Guard cells were isolated by sonication of abaxial epidermal peels of Vicia faba. The electrochromic band shift of isolated guard cells was probed in vivo as a means of studying the electric field that is generated across the thylakoid membranes by photosynthetic electron transport and dissipated by photophosphorylation. Both guard cells and mesophyll cells exhibited fast and slow components in the formation of the flash-induced electrochromic change. The spectrum of electrochromic absorbance changes in guard cells was the same as in the leaf mesophyll and was typical of that observed in isolated chloroplasts. This observation indicates that electron transport and photophosphorylation occur in guard cell chloroplasts. Neither the fast nor the slow component of the absorbance change was observed in the presence of the uncoupler carbonylcyanide p-trifluoromethoxy-phenylhydrazone which confirms that the absorbance change was caused by the electric field across the thylakoid membranes. The magnitude of the fast rise was reduced by half in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Therefore, photosystem II is functional and roughly equal in concentration to photosystem I in guard cell chloroplasts. The slow rise was abolished by 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone indicating the involvement of the cytochrome b6/f complex in electron transport between the two photosystems. Relaxation of the absorbance change was irreversibly retarded in cells treated with the energy transfer inhibitor, N,N′-dicyclohexylcarbodiimide. The slowing of the rapid decay kinetics by N,N′-dicyclohexylcarbodiimide confirms that the electrical potential across the thyalkoid membrane is dissipated by photophosphorylation. These results show that guard cell chloroplasts conduct photosynthetic electron transport in a manner similar to that in mesophyll cells and provide the first evidence that photophosphorylation occurs in guard cells in vivo.  相似文献   

6.
As part of an analysis of the factors regulating photosynthesis in Agropyron smithii Rydb., a C3 grass, the response of electron transport and photophosphorylation to temperature in isolated chloroplast thylakoids has been examined. The response of the light reactions to temperature was found to depend strongly on the preincubation time especially at temperatures above 35°C. Using methyl viologen as a noncyclic electron acceptor, coupled electron transport was found to be stable to 38°C; however, uncoupled electron transport was inhibited above 38°C. Photophosphorylation became unstable at lower temperatures, becoming progressively inhibited from 35 to 42°C. The coupling ratio, ATP/2e, decreased continuously with temperature above 35°C. Likewise, photosystem I electron transport was stable up to 48°C, while cyclic photophosphorylation became inhibited above 35°C. Net proton uptake was found to decrease with temperatures above 35°C supporting the hypothesis that high temperature produces thermal uncoupling in these chloroplast thylakoids. Previously determined limitations of net photosynthesis in whole leaves in the temperature region from 35 to 40°C may be due to thermal uncoupling that limits ATP and/or changes the stromal environment required for photosynthetic carbon reduction. Previously determined limitations to photosynthesis in whole leaves above 40°C correlate with inhibition of photosynthetic electron transport at photosystem II along with the cessation of photophosphorylation.  相似文献   

7.
Photosynthetic capacity decreases rapidly when temperate species are exposed to heat stress during reproductive development. We investigated whether injury in wheat (Triticum aestivum L.) resulted from general acceleration of senescence processes or specific heat-induced lesions. In situ photosynthetic capacity of leaf discs and thylakoid reactions were measured using flag leaf tissue from two cultivars maintained at 20 and 35°C during maturation. Photosynthetic rates of leaf discs decreased faster at 35 than at 20°C and were more photolabile in cv Len than in cv Waverly at high temperature. Patterns of thylakoid breakdown also differed in the two wheat genotypes at 20°C: intersystem electron transport and photosystem II activity decreased linearly during postanthesis development in Len wheat, whereas coupling of photophosphorylation to electron transport declined late during senescence in Waverly wheat. Heat stress induced early loss of intersystem electron transport followed sequentially by decreased silicomolybdic acid, + 3-(3,4-dichlorophenyl)-1-dimethylurea-mediated photosystem II activity and 2,5-dichloro-p-benzoquinone-mediated photosystem II activity in Len. Stress accelerated the uncoupling process, but loss of intersystem electron transport and photosystem II activities was slower in Waverly than in Len. We conclude that high temperature initially accelerated thylakoid component breakdown, an effect similar to normal senescence patterns. Thylakoid breakdown may induce a destabilizing imbalance between component reaction rates; an imbalance between photosystem II and cytochrome f/b6-mediated activities would be particularly damaging during heat stress.  相似文献   

8.
Chloroplast Reactions of Photosynthetic Mutants in Zea mays   总被引:8,自引:5,他引:3       下载免费PDF全文
Three seedling lethal mutants of Zea mays with impaired photosynthesis are described. These recessive mutants were selected on the basis of high chlorophyll fluorescence. They have normal chlorophyll pigmentation but are unable to fix CO2 fully. Evidence is presented from fluorescence characteristics of isolated chloroplasts that both photosystem I and II mutants were isolated. Using conventional measures of photosynthetic electron transport, we suggest that the photosystem I mutant has limited ability to reduce NADP. The other two mutants are clearly blocked in photosystem II, one possibly lacking the primary electron acceptor.  相似文献   

9.
The effects of electron acceptors, inhibitors of electron flow and uncouplers and inhibitors of photophosphorylation on a state II to I transition were studied. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not inhibit the state II to I transition. By contrast, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), methyl viologen and antimycin A inhibited the transition indicating that the cyclic electron flow around photosystem I, but not the oxidation of electron carriers (such as plastoquinone), induced the state II to I transition. Uncouplers, but not inhibitors of photophosphorylation, inhibited the state transition suggesting that the proton transport through the cyclic electron flow was related to the transition.  相似文献   

10.
The effects of electron acceptors, inhibitors of electron flow and uncouplers and inhibitors of photophosphorylation on a state II to I transition were studied. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not inhibit the state II to I transition. By contrast, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), methyl viologen and antimycin A inhibited the transition indicating that the cyclic electron flow around photosystem I, but not the oxidation of electron carriers (such as plastoquinone), induced the state II to I transition. Uncouplers, but not inhibitors of photophosphorylation, inhibited the state transition suggesting that the proton transport through the cyclic electron flow was related to the transition.  相似文献   

11.
In this work, we investigated electron transport processes in the cyanobacterium Synechocystis sp. PCC 6803, with a special emphasis focused on oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains. Redox transients of the photosystem I primary donor P700 and oxygen exchange processes were measured by the EPR method under the same experimental conditions. To discriminate between the factors controlling electron flow through photosynthetic and respiratory electron transport chains, we compared the P700 redox transients and oxygen exchange processes in wild type cells and mutants with impaired photosystem II and terminal oxidases (CtaI, CydAB, CtaDEII). It was shown that the rates of electron flow through both photosynthetic and respiratory electron transport chains strongly depended on the transmembrane proton gradient and oxygen concentration in cell suspension. Electron transport through photosystem I was controlled by two main mechanisms: (i) oxygen-dependent acceleration of electron transfer from photosystem I to NADP+, and (ii) slowing down of electron flow between photosystem II and photosystem I governed by the intrathylakoid pH. Inhibitor analysis of P700 redox transients led us to the conclusion that electron fluxes from dehydrogenases and from cyclic electron transport pathway comprise 20-30% of the total electron flux from the intersystem electron transport chain to P700+.  相似文献   

12.
The influence of a series of anions on photosynthetic reaction rates in spinach chloroplasts is descibed. For the most part, the stimulatory and inhibitory effects of these ions can be related to their chaotropic properties, although F, a nonchaotropic anion, inhibits photosystem II reactions and SO 4 2− and F inhibit photophosphorylation. Other exceptions include less severe effects of nitrate than expected and unusual sensitivity to iodide by photosystem I. Since free iodine inhibits photosystem I the iodine effect may be related to photooxidation of I to I0 by photosystem I. Cyclic and noncyclic photophosphorylation usually show greater sensitivity to each chaotrope than photosystems I and II activity, which suggests that phosphorylation factors, such as CF1, are easily detached or dissociated. Bromide is unusual in that it appears to affect photophosphorylation and electron transport at similar low concentrations. The type of cation appears to influence the response to the chaotropic anion, especially as increased inhibition by chloride in the presence of magnesium in photophosphorylation reactions.  相似文献   

13.
A photosynthetic mutant of Euglena gracilis, Z strain, thought to be blocked in the electron transport chain between the two photosystems and to have a missing or nonfunctional primary acceptor for photosystem II, was further studied and characterized. The data from low temperature fluorescence spectra, delayed light emission, and electron paramagnetic resonance support the previous work.  相似文献   

14.
The changes in the light-harvesting antenna size of photosystem I were investigated in the green alga Chlamydobotrys stellata during transition from autotrophic to photoheterotrophic nutrition by measuring the light-saturation behavior of hydrogen evolution following single turnover flashes. It was found that during autotrophic-to-photoheterotrophic transition the antenna size of photosystem I increased from 180 to 250 chlorophyll. The chlorophyll (a + b)/P700 ratio decreased from 800 to 550. The electron transport of photosystem I measured from reduced 2,6-dichloro-phenolindophenol to methylviologen was accelerated 1.4 times. In the 77K fluorescence spectra, the photosystem II fluorescence yield was considerably lowered relative to the photosystem I fluorescence yield. It is suggested that the increased light-harvesting capacity and redistribution of absorbed excitation energy in favor of photosystem I is a response of photoheterotrophic algae to meet the ATP demand for acetate metabolism by efficient photosystem I cyclic electron transport when the noncyclic photophosphorylation is inhibited by CO2 deficiency.  相似文献   

15.
16.
Isolated maize bundle sheath chloroplasts showed substantial rates of noncyclic photophosphorylation. A typical rate of phosphorylation coupled to whole-chain electron transport (methylviologen or ferricyanide as acceptor) was 60 μmol per hour per milligram chlorophyll) with a coupling efficiency (P/e2) of 0.6. Partial electron transport reactions driven by photosystem I or II supported phosphorylation with P/e2 values of 0.2 to 0.3. Thus, two sites of phosphorylation seem to be associated with the photosynthetic chain in much the same way as in spinach chloroplasts.  相似文献   

17.
Mutant strain 1073 of Lemna perpusilla is concluded to be blocked between plastoquinone and cytochrome f in the photosynthetic electron transport system. The location of the block is based on the following observations of activities in chloroplasts isolated from the mutant and wild-type plants. (a) Relative to wild type, electron flow rates from water to ferricyanide, 2,6-dichlorophenol indophenol or NADP were very low in the mutant, but rates of photosystem I-dependent electron flow and cyclic phosphorylation were high. (b) Chlorophyll a fluorescence induction curves for mutant and wild type were similar. (c) Silicomolybdate and lipophilic acceptors in the mutant were photoreduced at rates comparable to wild type. (d) Cytochrome f of the mutant chloroplasts was not reduced by red light, but was oxidized by red or far red light. (e) Reduction of the primary electron acceptor of photosystem II (Q) by ATP-driven reverse electron flow was not observed in the mutant.  相似文献   

18.
Keck RW  Boyer JS 《Plant physiology》1974,53(3):474-479
Cyclic and noncyclic photophosphorylation and electron transport by photosystem 1, photosystem 2, and from water to methyl viologen (“whole chain”) were studied in chloroplasts isolated from sunflower (Helianthus annus L. var Russian Mammoth) leaves that had been desiccated to varying degrees. Electron transport showed considerable inhibition at leaf water potentials of −9 bars when the chloroplasts were exposed to an uncoupler in vitro, and it continued to decline in activity as leaf water potentials decreased. Electron transport by photosystem 2 and coupled electron transport by photosystem 1 and the whole chain were unaffected at leaf water potentials of −10 to −11 bars but became progressively inhibited between leaf water potentials of −11 and −17 bars. A low, stable activity remained at leaf water potentials below −17 bars. In contrast, both types of photophosphorylation were unaffected by leaf water potentials of −10 to −11 bars, but then ultimately became zero at leaf water potentials of −17 bars. Although the chloroplasts isolated from the desiccated leaves were coupled at leaf water potentials of −11 to −12 bars, they became progressively uncoupled as leaf water potentials decreased to −17 bars. Abscisic acid and ribonuclease had no effect on chloroplast photophosphorylation. The results are generally consistent with the idea that chloroplast activity begins to decrease at the same leaf water potentials that cause stomatal closure in sunflower leaves and that chloroplast electron transport begins to limit photosynthesis at leaf water potentials below about −11 bars. However, it suggests that, during severe desiccation, the limitation may shift from electron transport to photophosphorylation.  相似文献   

19.
In this study, we evaluated how cadmium inhibitory effect on photosystem II and I electron transport may affect light energy conversion into electron transport by photosystem II. To induce cadmium effect on the photosynthetic apparatus, we exposed Chlamydomonas reinhardtii 24 h to 0–4.62 μM Cd2+. By evaluating the half time of fluorescence transients O–J–I–P at different temperatures (20–30°C), we were able to determine the photosystem II apparent activation energies for different reduction steps of photosystem II, indicated by the O–J–I–P fluorescence transients. The decrease of the apparent activation energies for PSII electron transport was found to be strongly related to the cadmium-induced inhibition of photosynthetic electron transport. We found a strong correlation between the photosystem II apparent activation energies and photosystem II oxygen evolution rate and photosystem I activity. Different levels of cadmium inhibition at photosystem II water-splitting system and photosystem I activity showed that photosystem II apparent activation energies are strongly dependent to photosystem II donor and acceptor sides. Therefore, the oxido-reduction state of whole photosystem II and I electron transport chain affects the conversion of light energy from antenna complex to photosystem II electron transport.  相似文献   

20.
Chloroplasts developed at cold-hardening (5°C) and non-hardening temperatures (20°C) were compared with respect to the stability of photosynthetic electron transport activities, the capacity to produce and maintain a H+ gradient and the capacity fat photophosphorylation as a function of resuspension in the presence or absence of osmoticum. The results for electron transport indicate that whole chain, photosystem I and pfaotosystem II activities in non-hardened chloroplast thyalkoids were unaffected by resuspension in the presence of high or low osmoticum. In contrast, the same electron transport activities in cold-hardened chloroplast thylakoids exhibited a 3- to 4-fold decrease in activity when resuspended in the presence of low osmoticum. Impairment of electron transport through photosystem II of cold-hardened thylakoids resuspended in the presence of low osmoticum was supported by room temperature fluorescence induction kinetics. Since the presence of Mn2+ partially overcame this inhibition, it is concluded that this osmotically-induced inhibition of PSII activity in cold-hardened chloroplast thylakoids may, in part, be due to damage to the H2O-splitting side of photosystem II. Both the initial rate and the maximum capacity for cyclic photophosphorylation were significantly inhibited in cold-hardened as compared to non-hardened thylakoids upon resuspension in the presence of low concentrations of osmoticum. This was correlated with an inability of the cold-hardened chloroplast thylakoids to maintain a significant transrnembrane H+ gradient. The results indicate that cold-hardened thylakoid membranes required an osmotic concentration (0.8 M) twice as high as non-hardened thylakoids (0.4 M) to produce the same initial rate of H+ uptake. In addition, the capacity to produce a proton gradient in cold-hardened thylakoids was less stable than that in non-hardened thylakoids regardless of the osmotic concentration tested. It is concluded that development of rye thylakoid membranes at low temperature results in a differential sensitivity to low osmoticum and thus extreme caution should be exercised when comparing the structure and function of isolated thylakoids developed under contrasting thermal regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号