首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
趋化蛋白是一类与炎症反应密切相关的小分子蛋白南,在机体抗病毒免疫中起重要作用。某些趋化蛋白可正向趋化、吸收病毒持异性CTL至病感染局部CTL除可直接裂解感染细胞或释放广谱的抗因子以精除病毒感染外,还可分泌多种趋化蛋白,介导各种非特异性炎性细胞,甚至牧场划性CT本身的迁移、增殖和协同作用在抗病毒感染中发挥协调作用。某些病毒可编码产生趋化蛋白/趋化蛋白受体样分子或拮抗剂,逃避宿主免疫细胞的攻击。  相似文献   

2.
耐热碱性磷酸酯酶的功能结构域的定位   总被引:4,自引:2,他引:2  
 为了确定耐热碱性磷酸酯酶 (TAPND2 7)发挥活性所必需的功能结构域 ,通过 PCR介导的诱变缺失 ,得到了 N端分别缺失 8、1 6、2 5个氨基酸的 3个缺失体 p TAPN8、p TAPN1 6和p TAPN2 5以及 C端分别缺失 1 0和 30个氨基酸的两个缺失体 p TAPC1 0和 p TAPC30 .经表达和活性测定 ,发现 p TAPN8和 TAPC1 0保持了较高的活性而其余 3个缺失体则失去酶活性 .据此 ,TAPND2 7的活性区域被定位在 8~ 465氨基酸之间 .在分离纯化的基础上测定了一些酶学性质 .发现 TAPN8和 TAPC1 0的比活没有大的改变 ,Tm 下降了 5.5℃ ;TAPN8的最适反应温度上升了1 0℃ .结果提示了 N端和 C端的这些氨基酸残基对热稳定性有一定的贡献 ,N端氨基酸残基还对酶的亲热性有贡献 .  相似文献   

3.
Hu ZH  Tian Q  Wang JZ 《生理科学进展》2006,37(2):173-174
Tau蛋白过度磷酸化在阿尔采末病(Alzheimer’s disease,AD)发病过程中发挥重要作用,抑制蛋白磷酸酯酶活性,可诱导tau的过度磷酸化和聚积。本文拟就近年来蛋白磷酸酯酶在tau蛋白异常磷酸化中的作用作一综述。  相似文献   

4.
趋化是细菌为了更好的生存而趋利避害的一种运动形式,从感知外界化学物质到最终做出反应,细菌中的信号转导系统起到了接收信号,并将信号传递到鞭毛蛋白进而改变细菌运动形式的功能。到目前为止,细菌趋化过程中的信号转导系统已经得到了详尽的研究。信号的接收、传递,系统中蛋白的定位,结构、转导机制等方面均有研究。本文对细菌趋化过程中信号转导系统的研究现状进行了综述。  相似文献   

5.
从58株来自国内温泉的嗜热细菌中分离到一株菌,它所产生的耐热碱性磷酸酯酶在95℃中保温60min后仍保留原来活力的75%.测定了酶的一系列性质,包括酶作用的最适pH、最适离子强度、最适温度,以及酶的热稳定性、米氏常数、活化能等等,还研究了一些无机离子、氨基酸以及表面活性剂对酶活的影响.DNA杂交方面的初步实验结果表明用该酶标记的核酸作为非放射性探针可用于在高温下进行的杂交反应.  相似文献   

6.
孙雨  常晶晶  田春杰 《生态学报》2021,41(24):9963-9969
在根际微环境中,特定的土壤微生物能够利用自身独特的趋化系统感应根系分泌物,响应植物的选择性招募。细菌的趋化系统介导了植物-微生物以及微生物间相互作用,在植物对根际微生物组的选择中发挥着关键的生态学功能。综述了根际微生物组中细菌趋化系统的研究进展,从生态学的角度提出了未来针对根际细菌趋化系统的研究方向,旨在阐明根际细菌趋化系统的生态学功能,为增进理解作物根际微生物组的募集过程,以及未来农业中根际微生物组的重组构建奠定理论基础。  相似文献   

7.
鲍荣辉  刘先哲 《生命科学》2006,18(5):477-480
单核细胞趋化蛋白及其受体在机体免疫应答中(免疫调节、器官形成、调节造血和神经元通讯)发挥了重要作用,同时也广泛参与某些疾病的发病机制(动脉粥样硬化、感染炎症性疾病及肿瘤等)。因此,有关趋化性细胞因子的新理论和技术可为临床治疗某些疾病提供了新思路。本文简要地综述单核细胞趋化蛋白受体的生物学特性、生物学作用及对心血管疾病的影响作用。  相似文献   

8.
将人胎盘碱性磷酸酯酶 (hPLAP)基因克隆到质粒ppICZαA中并在巴斯德毕赤酵母Pichiapastoris蛋白酶缺陷菌株SMD1 1 6 8中诱导表达。结果表明 :2拷贝子的重组酵母诱导表达产物酶活性最高 ,拷贝Mut 和Muts 表型不同对hPLAP酶活性没有显著影响  相似文献   

9.
糖尿病肾病是多因素引起的复杂性疾病,近年研究发现炎症反应参与了该病的发生与发展.单核细胞趋化蛋白-1是趋化因子CC亚家族的一员,在募集巨噬细胞等炎性细胞参与炎症反应中扮演着重要的角色.其趋化单核巨噬细胞于糖尿病肾组织中,可介导溶酶体释放,产生氧自由基,促进单核巨噬细胞表达β1-转化生长因子(transforming growth factor β1,TGF-β1),而广泛浸润臣噬细胞加剧了肾小球基底膜增厚、细胞外基质堆积,进而发展为肾小球硬化和间质纤维化.深入研究单核细胞趋化蛋白-1在糖尿病肾病中的作用,可望为糖尿病肾病的预防和治疗提供新的思路和途径.  相似文献   

10.
从酿酒酵母蛋白磷酸酯酶的分类和结构特征入手,阐述了该蛋白家族中的亚家族成员丝氨酸/苏氨酸蛋白磷酸酯酶的功能和表达调控.深入研究酿酒酵母丝氨酸/苏氨酸蛋白磷酸酯酶,特别是PP2C蛋白磷酸酯酶的细胞功能及其调控,将对新药研发和疾病干预治疗提供重要基础.  相似文献   

11.
The signal transduction system that mediates bacterial chemotaxis allows cells to moduate their swimming behavior in response to fluctuations in chemical stimuli. Receptors at the cell surface receive information from the surroundings. Signals are then passed from the receptors to cytoplasmic chemotaxis components: CheA, CheW, CheZ, CheR, and CheB. These proteins function to regulate the level of phosphorylation of a response regulator designated CheY that interacts with the flagellar motor switch complex to control swimming behavior. The structure of CheY has been determined. Magnesium ion is essential for activity. The active site contains highly conserved Asp residues that are required for divalent metal ion binding and CheY phosphorylation. Another residue-at the active site, Lys109, is important in the phosphorylation-induced conformational change that facilitates communication with the switch complex and another chemotaxis component, CheZ. CheZ facilitates the dephosphorylation of phospho-CheY. Defects in CheY and CheZ can be suppressed by mutations in the flagellar switch complex. CheZ is thought to modulate the switch bias by varying the level of phospho-CheY. © 1993 Wiley-Liss, Inc.  相似文献   

12.
An allosteric model for transmembrane signaling in bacterial chemotaxis   总被引:4,自引:0,他引:4  
Bacteria are able to sense chemical gradients over a wide range of concentrations. However, calculations based on the known number of receptors do not predict such a range unless receptors interact with one another in a cooperative manner. A number of recent experiments support the notion that this remarkable sensitivity in chemotaxis is mediated by localized interactions or crosstalk between neighboring receptors. A number of simple, elegant models have proposed mechanisms for signal integration within receptor clusters. What is a lacking is a model, based on known molecular mechanisms and our accumulated knowledge of chemotaxis, that integrates data from multiple, heterogeneous sources. To address this question, we propose an allosteric mechanism for transmembrane signaling in bacterial chemotaxis based on the "trimer of dimers" model, where three receptor dimers form a stable complex with CheW and CheA. The mechanism is used to integrate a diverse set of experimental data in a consistent framework. The main predictions are: (1) trimers of receptor dimers form the building blocks for the signaling complexes; (2) receptor methylation increases the stability of the active state and retards the inhibition arising from ligand-bound receptors within the signaling complex; (3) trimer of dimer receptor complexes aggregate into clusters through their mutual interactions with CheA and CheW; (4) cooperativity arises from neighboring interaction within these clusters; and (5) cluster size is determined by the concentration of receptors, CheA, and CheW. The model is able to explain a number of seemingly contradictory experiments in a consistent manner and, in the process, explain how bacteria are able to sense chemical gradients over a wide range of concentrations by demonstrating how signals are integrated within the signaling complex.  相似文献   

13.
Gram-negative bacteria are able to respond chemotactically to carbohydrates which are substrates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). The mechanism of signal transduction in PTS-mediated chemotaxis is different from the well-studied mechanism involving methyl-accepting chemotaxis proteins (MCPs). In PTS-mediated chemotaxis, carbohydrate transport is required, and phosphorylation seems to be involved in both excitation and adaptation. In this review the roles of the components of the PTS in chemotactic signal transduction are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well‐documented examples of higher‐order intracellular signalling structures in bacteria. One of the most prominent and best‐characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division.  相似文献   

15.
We have combined two distinct but related stochastic approaches to model the Escherichia coli chemotaxis pathway. Reactions involving cytosolic components of the pathway were assumed to obey the laws of conventional stochastic chemical kinetics, while the clustered membrane receptors were represented in two-dimensional arrays similar to the Ising model. Receptors were assumed to flip between an active and an inactive state with probabilities dependent upon three energy inputs: ligand binding, methylation level due to adaptation, and the activity of neighbouring receptors. Examination of models with different lattice size and geometry showed that the sensitivity to stimuli increases with lattice size and the nearest-neighbour coupling strength up to a critical point, but this amplification was also accompanied by a proportional increase in steady-state noise. Multiple methylation of receptors resulted in diminished signal-to-noise ratio, but showed improved stability to variation in the coupling strength and increased gain. Under the best conditions the simulated output of a coupled lattice of receptors closely matched the time-course and amplitude found experimentally in living bacteria. The model also has some of the properties of a cellular automaton and shows an unexpected emergence of spatial patterns of methylation within the receptor lattice.  相似文献   

16.
Protein–protein interactions play key roles in virtually all cellular processes, often forming complex regulatory networks. A powerful tool to study interactions in vivo is fluorescence resonance energy transfer (FRET), which is based on the distance‐dependent energy transfer from an excited donor to an acceptor fluorophore. Here, we used FRET to systematically map all protein interactions in the chemotaxis signaling pathway in Escherichia coli, one of the most studied models of signal transduction, and to determine stimulation‐induced changes in the pathway. Our FRET analysis identified 19 positive FRET pairs out of the 28 possible protein combinations, with 9 pairs being responsive to chemotactic stimulation. Six stimulation‐dependent and five stimulation‐independent interactions were direct, whereas other interactions were apparently mediated by scaffolding proteins. Characterization of stimulation‐induced responses revealed an additional regulation through activity dependence of interactions involving the adaptation enzyme CheB, and showed complex rearrangement of chemosensory receptors. Our study illustrates how FRET can be efficiently employed to study dynamic protein networks in vivo.  相似文献   

17.
Chemotactic behavior of Escherichia coli involves communication between methyl-accepting chemotaxis proteins and basal ends, the rotary motors of bacterial flagella. Both the proteins and the basal ends are embedded in the cytoplasmic membrane, but the spatial relationship between the two has not been determined. This communication describes a procedure for obtaining a preparation of membrane vesicles enriched in basal ends and thus in the regions of membrane immediately surrounding them. Methyl-accepting chemotaxis proteins were neither enriched nor depleted in this membrane fraction but instead were distributed throughout the membrane. Thus functional linkages between these proteins and flagellar motors must be mediated by processes other than direct physical interaction.  相似文献   

18.
J F Hess  K Oosawa  N Kaplan  M I Simon 《Cell》1988,53(1):79-87
Six cytoplasmic che gene products are required for signal transduction in bacterial chemotaxis, but the nature of their biochemical interactions is not known. We show that in vitro the CheA protein becomes autophosphorylated in the presence of ATP. In addition, the phosphate group on CheA can be rapidly transferred to CheB, a protein involved in adaptation to stimuli, or to CheY, a protein involved in the excitation response. The phosphorylation of CheB and CheY is transient; they readily dephosphorylate. We have also found that CheZ, a protein that appears to antagonize CheY function in vivo, accelerates the hydrolysis of the phosphate on CheY. These results suggest that signal transduction in bacterial chemotaxis may involve the flow of phosphate through a cascade of phosphorylated protein intermediates.  相似文献   

19.
Silversmith RE 《Biochemistry》2005,44(21):7768-7776
In Escherichia coli chemotaxis, the CheZ phosphatase catalyzes the removal of the phosphoryl group from the signaling molecule, CheY. The cocrystal structure of CheZ with CheY x BeF3- x Mg2+ (a stable analogue of CheY-P) revealed that CheZ is a homodimer with a multidomain, nonglobular structure. To explore the effects of CheZ/CheY complex formation on CheZ structure, the rotational dynamics of the different structural domains of CheZ [the four-helix bundle, the N-terminal helix, the C-terminal helix, and the putative disordered linker between the C-terminal helix and the bundle] were evaluated. To monitor dynamics of the different regions, fluorescein probes were covalently attached at various locations on CheZ through reaction with engineered cysteine residues and the rotational behavior of the fluoresceinated derivatives were assessed using steady state fluorescence anisotropy. Anisotropy measurements at various solution viscosities (Perrin plot analysis) demonstrated large differences in global rotational motion for fluorophores located on different regions. Rotational correlation times for probes located on the four-helix bundle and the N-terminal helix agreed well with theoretical values predicted for a protein the size and shape of the four-helix bundle. However, the rotational correlation times of probes located on the linker and the C-terminal helix were 8-20x lower, indicating rapid motion independent of the bundle. The anisotropies of probes located on the linker and the C-terminal helix increased in the presence of divalent cation (Mg2+, Ca2+, or Mn2+) in a saturable fashion, consistent with a binding event (Kd approximately 1-4 mM) that results in decreased mobility. The anisotropies of probes located on the C-terminal helix and the C-terminal portion of the linker increased further as a result of binding CheY-P. In light of the recently available structural data and the high independent mobility of the C-terminus demonstrated here, we interpret the CheY-P-dependent increase in anisotropy to be a consequence of decreased mobility of the C-terminal region due to binding interactions with CheY-P, and not to the formation of higher order aggregates of the CheZ2(CheY-P)2 complex.  相似文献   

20.
The crystal structures of the ligand binding domain of a bacterial aspartate receptor suggest a simple mechanism for transmembrane signaling by the dimer of the receptor. On ligand binding, one domain rotates with respect to the other, and this rotational motion is proposed to be transmitted through the membrane to the cytoplasmic domains of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号