首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of experiments has been carried out to characterize 58-kDa human neutrophil collagenase (HNC) and compare it with human fibroblast collagenase (HFC). N-Terminal sequencing of latent and spontaneously activated HNC shows that it is a distinct collagenase that is homologous to HFC and other members of the matrix metalloproteinase gene family. Activation occurs autolytically by hydrolysis of an M-L bond at a locus homologous to the Q80-F81-V82-L83 autolytic activation site of HFC. This releases a 16-residue propeptide believed to contain the "cysteine switch" residue required for latency. Polyclonal antibody raised against HNC cross-reacts with HFC but with none of the other major human matrix metalloproteinases examined. Treatment of HNC with endoglycosidase F or N-glycosidase F indicates that it is glycosylated at multiple sites. The deglycosylated latent and spontaneously activated enzymes have molecular weights of approximately 44K and 42K, respectively. Differences in the carbohydrate processing of HFC and HNC may determine why HFC is a secreted protein while HNC is stored in intracellular granules. The kinetic parameters kcat and KM for the hydrolysis of the interstitial collagen types I, II, and III in solution by both collagenases have been determined. The strong preferences of HNC for type I collagen and of HFC for type III collagen found in earlier studies have been confirmed. The preference of HNC for type I over type III collagen is almost abolished when fibrillar collagens are used as substrates, but the preference for HFC for type III over type I collagen is only partially decreased.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The gelatinolytic activity of rat uterus collagenase   总被引:6,自引:0,他引:6  
The collagenase produced by rat uterine cells in culture has been examined for its ability to degrade denatured collagen. Acting as a gelatinase, rat uterus collagenase was able to successfully degrade the denatured chains of collagen types I through V. In addition, the enzyme produced multiple cleavages in these chains and displayed values for Km of 4-5 microM, compared to values of 1-2 microM when native collagen was used as substrate. Furthermore, rat uterus collagenase degraded the alpha 2 chain of denatured type I collagen at a significantly faster rate than the alpha 1 chain, as previously observed for human skin fibroblast collagenase. In contrast to the action of human skin collagenase, however, the rat uterus enzyme was found to be a markedly better gelatinase than a collagenase, degrading the alpha chains of denatured type I guinea pig skin collagen at rates some 7-15-fold greater than native collagen. Human skin collagenase degrades the same denatured chains at rates ranging from 13-44% of its rate on native collagen. Rat uterus collagenase, then, is approximately 50 times better a gelatinase than is human skin collagenase. In addition to its ability to cleave denatured collagen chains at greater rates than native collagen, the rat uterus collagenase also attacked a wider spectrum of peptide bonds in gelatin than does human skin collagenase. In addition to cleaving the Gly-Leu and Gly-Ile bonds characteristic of its action on native collagen, rat uterus collagenase readily catalyzed the cleavage of Gly-Phe bonds in gelatin. The rat enzyme was also capable of cleaving Gly-Ala and Gly-Val bonds, although these bonds were somewhat less preferred by the enzyme. The cleavage of peptide bonds other than Gly-Leu and Gly-Ile appears to be a property of the collagenase itself and not a contaminating protease. Thus, it appears that the collagenase responsible for the degradation of collagen during the massive involution of the uterus might also act as a gelatinase to further degrade the initial products of collagenolysis to small peptides suitable for further metabolism.  相似文献   

3.
The activation energy (EA) and solvent-deuterium kinetic isotope effect (kH/kD) of human skin fibroblast collagenase were studied on the homologous human type I, II, and III collagens in both native and denatured states. Values for EA on human type I and II collagens in solution were 47,000 and 61,000 cal, respectively. The Arrhenius plot for type III collagen, unlike that for the other types, was characterized by a break in EA at approximately 26 degrees C. At temperatures below this point, EA was 42,500 cal; at higher temperatures, EA fell to 29,500 cal. This latter value, intermediate between type I collagen monomers and denatured random gelatin alpha chains, appears to result from a further opening in the already loosened helix of the type III collagen molecule in the region of the 3/4:1/4 collagenase cleavage site. The EA of trypsin on native human type III collagen was also measured and found to be 70,000 cal. This high value calls into question the role of serine proteases in the physiologic degradation of this substrate; a much higher energy expenditure was required for trypsin to cleave type III collagen than for the fibroblast collagenase. Reaction velocity on human collagen types I-III in solution was slowed 15-35% (kH/kD = 1.2-1.5) by the substitution of deuterium for hydrogen in the solvent buffer. This value was far lower than that observed following the aggregation of solution monomers into insoluble fibrils (kH/kD = 9). Denaturation of triple helical monomers into random gelatin alpha chains eliminated any slowing by deuterium, and kH/kD was 1.0 in all cases. Since the same peptide bond hydrolysis accompanies the cleavage of all these forms of the collagen substrate, it would appear that the role of water at the rate-limiting step of collagen degradation may not reside in the hydrolysis of a peptide bond per se, but rather may reflect the difficulty in transporting water molecules to the site of such catalysis, especially following fibril aggregation.  相似文献   

4.
A collagenase secreted by tadpole (Rana catesbiana) back-skin explants in culture has been purified to electrophoretic homogeneity by successive chromatography on sulfopropyl Sephadex, Sephacryl S-200, collagen Sepharose, and heparin Sepharose. The purified enzyme has a molecular weight of approximately 49,000 and an isoelectric pH of 5.0. The enzyme is more active versus soluble collagen than reconstituted fibrils and exhibits very low activity against gelatin (specific activities: Type I collagen, 7660 units/mg; Type I gelatin, 66 units/mg). The collagenase obeys simple Michaelis-Menten kinetics using soluble type I collagen (Km), 0.35 microM; Vm, 1380 units/mg, at 25 degrees C and pH 7.4) and is inhibitable by chelating agents specific for transition metals. Methylene blue catalyzes the photoinactivation of this collagenase, suggesting the presence of essential histidine, tryptophan, tyrosine, or methionine residues.  相似文献   

5.
The initial proteolytic events in the hydrolysis of rat tendon type I collagen by the class I and II collagenases from Clostridium histolyticum have been investigated at 15 degrees C. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been used to detect the initial cleavage fragments of both the alpha 1(I) and alpha 2 chains, which migrate at different rates in the buffer system employed. Experiments with the class I collagenases indicate that the first cleavage occurs across all three chains of the triple helix close to the C-terminus to produce fragments whose alpha chains have molecular weights of approximately 88,000. The second cleavage occurs near the N-terminus to reduce the molecular weight of the alpha chains to 80,000. Initial proteolysis by the class II collagenases occurs across all three chains at a site in the interior of the collagen triple helix to give N- and C-terminal fragments with alpha-chain molecular weights of 35,000 and 62,000, respectively. The C-terminal fragment is subsequently cleaved to give fragments with alpha-chain molecular weights of 59,000. These results indicate that type I collagen is degraded at several hyperreactive sites by these enzymes. Thus, initial proteolysis by these bacterial collagenases occurs at specific sites, much like the mammalian collagenases. These results with the individual clostridial collagenases provide an explanation for earlier data which indicated that collagen is degraded sequentially from the ends by a crude clostridial collagenase preparation.  相似文献   

6.
The gelatinolytic activity of human skin fibroblast collagenase   总被引:5,自引:0,他引:5  
The gelatinolytic activity of human skin fibroblast collagenase was examined on denatured collagen types I-V. All denatured substrates were cleaved, including types IV and V, which are resistant to collagenase in native form. Interestingly, the earliest major cleavage in denatured collagen types I-III occurred at a 3/4-1/4 locus, resulting in products electrophoretically identical with TCA and TCB fragments of mammalian collagenase action on these native collagens. However, in the denatured substrates, multiple additional proteolytic cleavages followed. The propensity for cleavage at a 3/4-1/4 site in denatured collagen, where sequence is the major specifier of enzymatic action, would seem to indicate that the most favorable amino acid sequence of gamma chains for catalysis is located in this region. The peptide bond specificity of human fibroblast collagenase on gelatin was examined by amino acid sequencing of extensively cleaved denatured type I collagen. Analysis of the NH2-terminal amino acid residues from the resultant gelatin peptides showed sequences of "-H2N-Ile-Y-Gly" and "H2N-Leu-Y-Gly" only (where Y indicates that any amino acid can be found in that position), indicating that Gly-Ile and Gly-Leu bonds are the only sites of collagenase cleavage in this substrate. Whereas the gamma1 chains of denatured collagen types I-III were cleaved at similar rates, fibroblast collagenase was a much better gamma2-gelatinase than gamm1-gelatinase on denatured type 1 collagen. This preference for the cleavage of gamma2(I) was the result of both a higher kcat (750 versus 230 h-1) and lower Km (3.7 versus 7.0 microM) than for a gamma1(1), resulting in an overall selectivity (kcat/Km) of greater than 6-fold. Compared to such kinetic parameters on native collagen, these values indicate that gelatinolysis is somewhat slower than collagenolysis.  相似文献   

7.
Sequence specificities of human fibroblast and neutrophil collagenases.   总被引:3,自引:0,他引:3  
The sequence specificities of human fibroblast and neutrophil collagenases have been investigated by measuring the rate of hydrolysis of 60 synthetic oligopeptides covering the P4 through P'5 subsites of the substrate. The choice of peptides was patterned after both known cleavage sites in noncollagenous proteins and potential cleavage sites (those containing Gly-Ile-Ala, Gly-Leu-Ala, or Gly-Ile-Leu sequences) found in types I, II, III, and IV collagens. The initial rate of hydrolysis of the P1-P'1 bond of each peptide has been measured under first-order conditions ([SO] much less than KM), and kcat/KM values have been calculated from the initial rates. The amino acids in subsites P4 through P'4 all influence the hydrolysis rates for both collagenases. However, the effects of substitutions at each site are distinctive and are consistent with the view that human fibroblast and neutrophil collagenases are homologous but nonidentical enzymes. For peptides with unblocked NH2 and COOH termini, occupancy of subsites P3 through P'3 is necessary for rapid hydrolysis. Compared with the alpha 1(I) cleavage sequence, none of the substitutions investigated at subsites P3, P2, and P'4 produces markedly improved substrates. In contrast, many substitutions at subsites P1, P'1, and P'2 improve specificity. The preferences of both collagenases for alanine in subsite P1 and tryptophan or phenylalanine in subsite P'2, is noteworthy. Human neutrophil collagenase accommodates aromatic residues in subsite P'1 much better than human fibroblast collagenase. The subsite preferences observed for human fibroblast collagenase in these studies agree well with the residues found at cleavage sites in noncollagenous substrates. However, the sequence specificities of these collagenases cannot explain the failure of these enzymes to hydrolyze many potentially cleavable but apparently protected sites in intact collagens. This represents additional support for the notion that the local structure of collagen is important in determining the location of collagenase cleavage sites.  相似文献   

8.
The substrate specificity of human collagenase 3 (MMP-13), a member of the matrix metalloproteinase family, is investigated using a phage-displayed random hexapeptide library containing 2 x 10(8) independent recombinants. A total of 35 phage clones that express a peptide sequence that can be hydrolyzed by the recombinant catalytic domain of human collagenase 3 are identified. The translated DNA sequence of these clones reveals highly conserved putative P1, P2, P3 and P1', P2', and P3' subsites of the peptide substrates. Kinetic analysis of synthetic peptide substrates made from human collagenase 3 selected phage clones reveals that some of the substrates are highly active and selective. The most active substrate, 2, 4-dinitrophenyl-GPLGMRGL-NH(2) (CP), has a k(cat)/K(m) value of 4.22 x 10(6) m(-)(1) s(-)(1) for hydrolysis by collagenase 3. CP was synthesized as a consensus sequence deduced from the preferred subsites of the aligned 35 phage clones. Peptide substrate CP is 1300-, 11-, and 820-fold selective for human collagenase 3 over the MMPs stromelysin-1, gelatinase B, and collagenase 1, respectively. In addition, cleavage of CP is 37-fold faster than peptide NF derived from the major MMP-processing site in aggrecan. Phage display screening also selected five substrate sequences that share sequence homology with a major MMP cleavage sequence in aggrecan and seven substrate sequences that share sequence homology with the primary collagenase cleavage site of human type II collagen. In addition, putative cleavage sites similar to the consensus sequence are found in human type IV collagen. These findings support previous observations that human collagenase 3 can degrade aggrecan, type II and type IV collagens.  相似文献   

9.
Three different types of neutral proteases related to collagen metabolism have been found in the granule fraction of human leucocytes from normal adults, using collagen, gelatin, and synthetic peptides as substrates. These are collagenase, an enzyme showing a potent hydrolytic activity against gelatin but little against native collagen, and one splitting the cross-links region of collagen. Their molecular weights were estimated to be about 75,000 150,000, and 25,000, respectively, by gel chromatography. The former two enzymes were inhibited by a alpha2-macroglobulin and ethylenediaminetetraacetate, but not by alpha1-proteinase inhibitor (alpha1-antitrypsin) or phenylmethylsulfonylfluoride, while the latter enzyme, associated in behavior with an enzyme hydrolyzing succinyl-(l-alanyl)3-p-nitroanilide, was inhibited by alpha1-proteinase inhibitor, alpha2-macroglobulin, and phenylmethylsulfonylfluoride, but not by ethylenediaminetetraacetate. A possible cooperative function of these enzymes in collagen catabolism is discussed.  相似文献   

10.
The collagenases are members of the matrix metalloproteinase family (MMP) that degrade native triple-helical type I collagen. To understand the mechanism by which these enzymes recognize and cleave this substrate, we studied the substrate specificity of a modified form of MMP-1 (FC) in which its active site region (amino acids 212-254) had been replaced with that of MMP-9 (amino acids 395-437). Although this substitution increased the activity of the enzyme toward gelatin and the peptide substrate Mca-PLGL(Dpa)AR-NH2 by approximately 3- and approximately 11-fold, respectively, it decreased the type I collagenolytic activity of the enzyme to 0.13%. The replacement of Gly233, the only amino acid in this region of FC that is conserved in all collagenase family members, with the corresponding Glu residue in MMP-9 resulted in a substantial decrease in the type I collagenolytic activity of the enzyme without affecting its general proteolytic activities. The kinetic parameters of the FC/G233E mutant for the collagen substrate were similar to those of the chimeric enzyme. In addition, substituting Gly233 for Glu in the chimera increased the collagenolytic activity of the enzyme by 12-fold. Interestingly, replacing Glu415 in MMP-9 with Gly, its corresponding residue in FC, endowed the enzyme with type I collagenolytic activity. The catalytic activity of the MMP-9 mutant toward triple-helical type I collagen was 2-fold higher than that of the collagenase chimera. These data in conjunction with the X-ray crystal structure of FC indicate that Gly233 provides the flexibility necessary for the enzyme active site to change conformation upon substrate binding. The flexibility provided by the Gly residue is essential for type I collagenolytic activity.  相似文献   

11.
Type IV collagenase (gelatinase) has a marked substrate specificity for denatured collagen (gelatin). Cleavage site specificity of type IV collagenase from human skin was determined using small collagenous peptides with varied sequences around Gly-Leu or Gly-Ile. Type IV collagenase showed essentially the same order of preference for the peptide substrates as did interstitial collagenase. Both required a peptide with a minimum of six amino acid residues to demonstrate significant gelatinolytic activity and were able to cleave uncharged molecules more rapidly than charged molecules. the repeating Gly-X-Y-Gly sequence of collagen is not an absolute requirement for either enzyme since both digested AcPro-Leu-Gly-Ile-Leu-Ala-Ala-OC2H5 at 70% of the rate of the best substrate peptide, AcPro-Leu-Gly-Leu-Leu-Gly-OC2H5. Km and kcat (Vmax) values were determined for several of the peptides and for the native substrate. Turnover numbers with type IV collagenase were similar to those with interstitial collagenase (Weingarten, H., Martin, R., and Feder, J. (1985) Biochemistry 24, 6730-6734). However, the Km for all peptides investigated was approximately 10-fold lower for type IV collagenase than for interstitial collagenase. Because type IV collagenase does not cleave helical interstitial collagens, the data support the conclusion that secondary structure determines whether the peptide bond can be hydrolyzed at any potential cleavage site.  相似文献   

12.
A metalloproteinase similar or identical to stromelysin was shown to co-purify with interstitial collagenase from the rat mammary carcinoma cell line, BC1. The mixture of BC1 metalloproteinase and collagenase degraded casein, gelatin, fibronectin, fibrinogen, laminin, proteoglycan and type IV collagen, in addition to types I and II collagen. Using SDS-PAGE and zymography, the Mr of both enzymes was 51.10(3). During storage, the 51.10(3) protein converted to fragments of Mr 34.10(3) and 24.10(3), and isoelectric points of 4.6-5.3 and 5.7-6.0, respectively. The fragments were separated from the intact (Mr 51.10(3) enzymes by DEAE-Sepharose chromatography, but intact metalloproteinase and collagenase activities resisted separation by a range of chromatographic methods. The Mr 34.10(3) fragment retained the proteinolytic activities of the intact enzymes, excepting collagenase cleavage of collagen types I and II. The Mr 24.10(3) fragment had no proteinolytic activity, showed an increase in Mr of 6.10(3) upon reduction, in common with the intact enzymes, and also had similar chromatographic properties to the intact enzymes. The data presented are consistent with a pattern of breakdown which is common to both collagenase and the metalloproteinase, and suggest that both enzymes are comprised of two protein domains.  相似文献   

13.
Collagenase cleavage of human Type II and III collagens has been studied using a highly purified preparation of rabbit tumor collagenase. Progress of the reactions in solution was followed by viscometry and the results indicated that under the conditions employed Type III collagen molecules were cleaved at approximately five times the rate of Type II molecules. Cleavage products of the reactions were isolated in denatured form by agarose molecular sieve chromatography. The molecular weights and amino acid compositions of the products demonstrated that Type II and III molecules had been cleaved at the characteristic three-quarter, one-quarter locus, giving rise to a large fragment derived from the NH2-terminal portion of the molecule and a smaller fragment representing the COOH-terminal region. The amino acid sequence at the NH2-terminal portion of the smaller fragment derived from Type II collagen was determined to be Ile-Ala-Gly-Gln-Arg, and the corresponding region from Type III collagen was found to have the sequence Leu-Ala Gly-Leu-Arg. These sequences for alpha1(II) and alpha1(III) chains adjacent to the site of collagenase cleavage along with previous data for alpha1(I) and alpha2 chains indicate that the minimum specific sequence required for collagenase cleavage is Gly-Ile-Ala or Gly-Leu-Ala. Inspection of the available sequence data for collagen alpha chains indicates that the latter sequences are found in at least three additional locations at which collagenase cleavage does not occur. Each of the sequences which are apparently not substrates for collagenase, however, are followed by a Gly-X-Hyp sequence. We suggest, then, that a minimum of five residues in collagen alpha chains COOH-terminal to the cleavage site comprise the substrate recognition site.  相似文献   

14.
Fluorescent probes have been used to obtain dissociation constants for the fluid-phase interaction of human plasma fibronectin and several of its gelatin-binding fragments with purified alpha chains of type I rat tail collagen, as well as with a cyanogen bromide fragment (CB7) of the alpha 1 chain in 0.02 M Tris buffer containing 0.15 M NaCl at pH 7.4. Addition of fibronectin to fluorescein-labeled collagen chains caused a dose-dependent increase in the fluorescence anisotropy which continued over several logs of titrant concentration. Scatchard-type plots of the anisotropy response were biphasic indicating the presence of one or more weak sites (Kd greater than microM) along the collagen chain in addition to a strong site characterized by Kd = 1.3 X 10(-8) M at 25 degrees C. Gelatin-binding fragments with Mr = 42,000, 60,000, and 72,000 also produced a biphasic response with Kd values for the high affinity site being 10- to 20-fold greater than for intact fibronectin. Binding of fibronectin and its fragments to fluorescent-labeled CB7 was essentially the same as to the whole alpha 1 chain. In all cases, the anisotropy response could be reversed or prevented by addition of excess unlabeled gelatin or CB7, but not by synthetic peptides spanning the collagenase cleavage site of alpha 1 (I). Studies of the temperature dependence of Kd for binding of fibronectin to the high affinity site on alpha 1 produced a value of +16 kcal/mol for the enthalpy of dissociation below 30 degrees C. Above this temperature, fibronectin appeared to undergo a subtle conformational transition characterization by a reduced affinity for collagen. This transition occurred in whole fibronectin but not in the gelatin-binding fragments and may involve disruption of intramolecular interactions between different domains.  相似文献   

15.
MMP-2 (matrix metalloproteinase 2) contains a CBD (collagen-binding domain), which is essential for positioning gelatin substrate molecules relative to the catalytic site for cleavage. Deletion of the CBD or disruption of CBD-mediated gelatin binding inhibits gelatinolysis by MMP-2. To identify CBD-binding sites on type I collagen and collagen peptides with the capacity to compete CBD binding of gelatin and thereby inhibit gelatinolysis by MMP-2, we screened a one-bead one-peptide combinatorial peptide library with recombinant CBD as bait. Analyses of sequences from the CBD-binding peptides pointed to residues 715-721 in human alpha1(I) collagen chain as a binding site for CBD. A peptide (P713) including this collagen segment was synthesized for analyses. In SPR (surface plasmon resonance) assays, the CBD and MMP-2(E404A), a catalytically inactive MMP-2 mutant, both bound immobilized P713 in a concentration-dependent manner, but not a scrambled control peptide. Furthermore, P713 competed gelatin binding by the CBD and MMP-2(E404A). In control assays, neither of the non-collagen binding alkylated CBD or MMP-2 with deletion of CBD (MMP-2DeltaCBD) bound P713. Consistent with the exodomain functions of the CBD, P713 inhibited approximately 90% of the MMP-2 gelatin cleavage, but less than 20% of the MMP-2 activity on a peptide substrate (NFF-1) which does not require the CBD for cleavage. Confirming the specificity of the inhibition, P713 did not alter MMP-2DeltaCBD or MMP-8 activities. These experiments identified a CBD-binding site on type I collagen and demonstrated that a corresponding synthetic peptide can inhibit hydrolysis of type I and IV collagens by competing CBD-mediated gelatin binding to MMP-2.  相似文献   

16.
Degradation of type I collagen, the most abundant collagen, is initiated by collagenase cleavage at a highly conserved site between Gly775 and Ile776 of the alpha 1 (I) chain. Mutations at or around this site render type I collagen resistant to collagenase digestion in vitro. We show here that mice carrying a collagenase-resistant mutant Col1a-1 transgene die late in embryo-genesis, ascribable to overexpression of the transgene, since the same mutation introduced into the endogenous Col1a-1 gene by gene targeting permitted normal development of mutant mice to young adulthood. With increasing age, animals carrying the targeted mutation developed marked fibrosis of the dermis similar to that in human scleroderma. Postpartum involution of the uterus in the mutant mice was also impaired, with persistence of collagenous nodules in the uterine wall. Although type I collagen from the homozygous mutant mice was resistant to cleavage by human or rat fibroblast collagenases at the helical site, only the rat collagenase cleaved collagen trimers at an additional, novel site in the nonhelical N-telopeptide domain. Our results suggest that cleavage by murine collagenase at the N-telopeptide site could account for resorption of type I collagen during embryonic and early adult life. During intense collagen resorption, however, such as in the immediate postpartum uterus and in the dermis later in life, cleavage at the helical site is essential for normal collagen turnover. Thus, type I collagen is degraded by at least two differentially controlled mechanisms involving collagenases with distinct, but overlapping, substrate specificities.  相似文献   

17.
J C Monboisse  J Labadie  P Gouet 《Biochimie》1979,61(10):1169-1175
The Acinetobacter spec collagenase has been almost completely purified. This enzyme is a true collagenase the activity of which is high on collagen. The enzyme is active on insoluble collagen, gelatin and the synthetic Pz-peptide, but has no proteolytic activity on casein or bovine serum-albumin. The collagenase was obtained on a simple medium with gelatin and yeast extract. The enzyme was purified by (NH4)2SO4 precipitation. DEAE cellulose column chromatography, Sephadex G 200 gel-filtration. The molecular weight of the enzyme was found to be 102 000 daltons, and its isoelectric point was found to be 7,7 +/- 0,2. The optimum pH and temperature for insoluble collagen hydrolysis were 7.6 and 37 degrees C, respectively; so, this collagenase corresponds to true collagenase. Hydrolysis of Pz-peptide is activated by Ca2+ and inhibited by metal ions (Cu2+, Fe3+, Zn2+, Pb2+, Hg2+). EDTA and o-phenanthroline induced a very significant reduction in enzyme activity. Iodoacetate and p-CMB induced a slight reduction in enzyme activity only at high concentrations (10-2M). The collagenase is most stable for temperatures less than or equal to 50 degrees C.  相似文献   

18.
Accurate and quantitative assays for the hydrolysis of soluble 3H-acetylated rat tendon type I, bovine cartilage type II, and human amnion type III collagens by both bacterial and tissue collagenases have been developed. The assays are carried out at any temperature in the 1-30 degrees C range in a single reaction tube and the progress of the reaction is monitored by withdrawing aliquots as a function of time, quenching with 1,10-phenanthroline, and quantitation of the concentration of hydrolysis fragments. The latter is achieved by selective denaturation of these fragments by incubation under conditions described in the previous paper of this issue. The assays give percentages of hydrolysis of all three collagen types by neutrophil collagenase that agree well with the results of gel electrophoresis experiments. The initial rates of hydrolysis of all three collagens are proportional to the concentration of both neutrophil or Clostridial collagenases over a 10-fold range of enzyme concentrations. All three assays can be carried out at collagen concentrations. that range from 0.06 to 2 mg/ml and give linear double reciprocal plots for both tissue and bacterial collagenases that can be used to evaluate the kinetic parameters Km and kcat or Vmax. The assay developed for the hydrolysis of rat type I collagen by neutrophil collagenase is shown to be more sensitive by at least one order of magnitude than comparable assays that use rat type I collagen fibrils or gels as substrate.  相似文献   

19.
The proform of chick gelatinase (type IV collagenase) was isolated and purified to a high specific activity of 12,071 U/mg from cultured embryonic skin fibroblasts stimulated with cytochalasin-B. The enzyme was activated in the presence of 4-aminophenylmercuric acetate with a fall in molecular weight from 66,000-58,000 on non-reducing polyacrylamide gel electrophoresis and was active over the pH range of 6.0-8.9 against a number of substrates. Further biochemical characterisation showed that the organomercurial activated form of the enzyme behaved like a typical mammalian gelatinase, actively degrading gelatin, soluble type I collagen, collagenase generated type I fragments, type IV collagen (producing 3/4 and 1/4 fragments) and type V collagen, whilst having little effect on laminin. The enzyme was inhibited by metal chelators such as EDTA and 1,10-phenanthroline, but not by inhibitors is suggested that this may be TIMP-2. An antiserum was raised to the proenzyme and was found to localise intra- and extra-cellularly in both tissue sections and cell cultures.  相似文献   

20.
The separation and further purification of human polymorphonuclear-leucocyte collagenase and gelatinase, using modifications of the method of Cawston & Tyler [(1979) Biochem J. 183, 647-656], are described. The final preparations yielded collagenase of specific activity 260 units/mg and gelatinase of specific activity 13 000 units/mg. Gelatinase was purified to apparent homogeneity in a latent form, and analysis of the activation of 125I-labelled latent enzyme by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and gel-filtration techniques suggested that no peptide material was lost on conversion into the active form. The purified natural inhibitors alpha 2-macroglobulin, tissue inhibitor of metalloproteinases ('TIMP') and amniotic-fluid inhibitor of metalloproteinases all inhibited the two polymorphonuclear-leucocyte metalloproteinases, but the last two inhibitors were slow to act and complete inhibition was difficult to attain. Collagenase degraded soluble types I and III collagen equally efficiently, but soluble type II collagen less well. Gelatinase alone had little activity on these substrates, although it enhanced the action of collagenase. Gelatinase was capable of degrading soluble types IV and V collagen at 25 degrees C, whereas collagenase was only active at higher temperatures when the collagens were susceptible to trypsin activity. By using tissue preparations of insoluble collagens (type I, II or IV) the activity of leucocyte collagenase was low and gelatinase activity was negligible, as measured by the solubilization of hydroxyproline-containing material. The two enzymes together were two or three times more effective in the degradation of these insoluble collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号