首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phagocytic removal of cells undergoing apoptosis is necessary for animal development and tissue homeostasis. Draper, a homologue of the Caenorhabditis elegans phagocytosis receptor CED‐1, is responsible for the phagocytosis of apoptotic cells in Drosophila, but its ligand presumably present on apoptotic cells remains unknown. An endoplasmic reticulum protein that binds to the extracellular region of Draper was isolated. Loss of this protein, which we name Pretaporter, led to a reduced level of apoptotic cell clearance in embryos, and the overexpression of pretaporter in the mutant flies rescued this defect. Results from genetic analyses suggested that Pretaporter functionally interacts with Draper and the corresponding signal mediators. Pretaporter was exposed at the cell surface after the induction of apoptosis, and cells artificially expressing Pretaporter at their surface became susceptible to Draper‐mediated phagocytosis. Finally, the incubation with Pretaporter augmented the tyrosine‐phosphorylation of Draper in phagocytic cells. These results collectively suggest that Pretaporter relocates from the endoplasmic reticulum to the cell surface during apoptosis to serve as a ligand for Draper in the phagocytosis of apoptotic cells.  相似文献   

2.
Summary The intra-axonal organization of the smooth endoplasmic reticulum was studied in the neurohypophysis of rats during and after water deprivation. Parallel to conventional electron microscopy, the material was treated with a double impregnation staining technique specifically designed to contrast the intracellular membranous system. In conventionally stained ultrathin sections from severely dehydrated rats most axons appeared to be free of membranous organelles, whereas corresponding axons treated with the double-impregnation technique generally exhibited a highly developed system of smooth endoplasmic reticulum. In axonal endings, both techniques revealed a profusion of microvesicles in intimate relationship with tubular elements of the smooth endoplasmic reticulum. In short-term (12 h) rehydrated rats, a similarly developed system of smooth endoplasmic reticulum was still observed at all axonal levels with both procedures. After 24 to 48 h of rehydration the tubules of the smooth endoplasmic reticulum exhibited, in double impregnated material, numerous dilatations which resembled the adjacent neurosecretory granules. In conventionally stained ultrathin sections, an accumulation of electron dense material occurred within tubules of the smooth endoplasmic reticulum in the more proximal axonal segments, while in the more terminal segments, which contained numerous elongated granules, membrane continuity was frequently observed between newly formed granules and the smooth endoplasmic reticulum. After 7 days of rehydration the general pattern of the axonal smooth endoplasmic reticulum was comparable to that in untreated rats. These results are discussed in the light of a suggested involvement of the axonal smooth endoplasmic reticulum in the non-granular transport of neurosecretory material in connection with (1) storage in distally formed granules, and (2) release via microvesicles. Acknowledgements: The authors wish to express their gratitude to Mrs. M. Balmefrézol for her skillful technical assistance  相似文献   

3.
Summary Neurosecretory cells of the supraoptic-neurohypophysial system of normal mice were investigated with the use of the cytochemical reaction for thiamine pyrophosphatase (TPPase) at the ultrastructural level. In the hypothalamic perikarya dense lead precipitates occur within the cisterns of the mature face of the Golgi apparatus, these being the cisterns that give rise to neurosecretory granules (NSG). Smooth endoplasmic reticulum is occasionally confluent with TPPase-positive Golgi cisterns. Along axons, within swellings, and within terminals distinct profiles of TPPase-positive tubules and cisterns are revealed, apparently part of a network of axonal smooth endoplasmic reticulum (AER). Some NSG appear to be confluent with AER. NSG with TPPase-positive tubular protrusions (likely vestiges of AER) are seen. Apart from reaction product (lead precipitate), the AER often contains an electron dense substance optically similar to that of NSG. TPPase-containing AER is often associated with mitochondria. Profiles of electron-lucent, precipitate-free tubules and cisterns are occasionally seen alongside reactive AER. Optimal TPPase activity in the AER occurs at pH 7.0–7.4, whereas in the Golgi complex intense marking is in the range of pH 6.0–8.5. A faint peppering of precipitate occasionally appears in the AER in controls (incubation medium without substrate), but neither in density nor in extent is this comparable to the reaction product seen after incubation in the presence of TPP. Preliminary comparison has been made between the AER revealed by the TPPase reaction, and that visualized after heavy metal impregnation according to the method of Alonso and Assenmacher (1978a). The nature of the close association between NSG and AER, and the possible roles of this membrane system in neurosecretory cells is discussed.Abbreviations AER axonal smooth endoplasmic reticulum - NSG neurosecretory granules - TPPase thiamine pyrophosphatase - SON supraoptic nucleus Research supported in part by a grant from the Israel Academy of Sciences to M.C.We thank Mrs. Ilana Sabnay for excellent technical assistance  相似文献   

4.
Calreticulin: not just another calcium-binding protein   总被引:15,自引:0,他引:15  
In this paper we review some of the rapidly expanding information about calreticulin, a Ca2+-binding/storage protein of the endoplasmic reticulum. The emphasis is placed on the structure and function of calreticulin. We believe that calreticulin is a multifunctional Ca2+-binding protein and that distinct functional properties of the protein may be localized to each of the three structural domains of calreticulin. Most evidence indicates that calreticulin is a resident endoplasmic reticulum protein. However, it can also be found outside of the endoplasmic reticulum compartment, i.e. in the nuclear envelope, in the nucleus, in the cytotoxic granules in T-lymphocytes and in acrosomal vesicles of sperm cells. The evidence reviewed here clearly suggests that calreticulin has other functions in addition to its role as a Ca2+ storage protein in the endoplasmic reticulum.Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum  相似文献   

5.
The N-glycosylation inhibitor tunicamycin triggers endoplasmic reticulum stress response and inhibits efficient protein secretion in eukaryotes. Using Arabidopsis suspension cells, we showed that the reduced secretion of mannose-binding lectin 1 (MBL1) protein by tunicamycin is accompanied by a significant decrease in MBL1 mRNA, suggesting that mRNA destabilization is the major cause of the inhibition of protein secretion in plants.  相似文献   

6.
Compartmentation of storage lipid biosynthesis in developing erucate-rich rapeseeds during the period of rapid triacylglycerol accumulation has been investigated by labelling acyl residues and the glycerol backbone in endomembrane lipids of isolated embryos with radioactive precursors, either before (“in vivo”) or after (“in vitro”) subcellular fractionation. In contrast to the low light environment within the pod under normal environmental conditions, the photosynthetic and lipid synthesizing capacities of the embryos were significantly stimulated by their illumination in the isolated state. Both ways of demonstrating “de novo” synthesis of triacylglycerols and erucic acid in endomembrane vesicles show their significantly higher accumulation in oil bodies than in microsomal fractions, where membrane lipids predominate. The increased diacylglycerol acylation in erucate-rich rape embryos appears to be coupled to an alternative elongation mechanism for oleic acid, with another immediate acyl donor than 18:1-CoA. The present results are interpreted as a spatial separation of triacylglycerol formation, with very long-chain fatty acids obtained from residual lipid synthesis and fatty acid elongating capacity located on the endoplasmic reticulum.  相似文献   

7.
Endoplasmic reticulum stress is defined as the accumulation of unfolded proteins in the endoplasmic reticulum, and is caused by conditions such as heat or agents that cause endoplasmic reticulum stress, including tunicamycin and dithiothreitol. Autophagy, a major pathway for degradation of macromolecules in the vacuole, is activated by these stress agents in a manner dependent on inositol‐requiring enzyme 1b (IRE1b), and delivers endoplasmic reticulum fragments to the vacuole for degradation. In this study, we examined the mechanism for activation of autophagy during endoplasmic reticulum stress in Arabidopsis thaliana. The chemical chaperones sodium 4–phenylbutyrate and tauroursodeoxycholic acid were found to reduce tunicamycin‐ or dithiothreitol‐induced autophagy, but not autophagy caused by unrelated stresses. Similarly, over‐expression of BINDING IMMUNOGLOBULIN PROTEIN (BIP), encoding a heat shock protein 70 (HSP70) molecular chaperone, reduced autophagy. Autophagy activated by heat stress was also found to be partially dependent on IRE1b and to be inhibited by sodium 4–phenylbutyrate, suggesting that heat‐induced autophagy is due to accumulation of unfolded proteins in the endoplasmic reticulum. Expression in Arabidopsis of the misfolded protein mimics zeolin or a mutated form of carboxypeptidase Y (CPY*) also induced autophagy in an IRE1b‐dependent manner. Moreover, zeolin and CPY* partially co‐localized with the autophagic body marker GFP–ATG8e, indicating delivery to the vacuole by autophagy. We conclude that accumulation of unfolded proteins in the endoplasmic reticulum is a trigger for autophagy under conditions that cause endoplasmic reticulum stress.  相似文献   

8.
Summary The nuclear-associated endoplasmic reticulum of L-929 cells was found to contain the highest amount of labeled phosphatidylcholine after a 60 min incubation with14C-choline. Radioactivity was otherwise distributed relatively evenly among other membrane-containing organelles (nuclei, mitochondria, plasma membranes and endoplasmic reticulum membranes). During a 120 min chase following removal of isotope and addition of cold choline chloride, there was a considerable reduction in labeled phosphatidylcholine in the NER and nuclei. The decrease in radioactivity in these fractions was matched by an almost identical increase in the fraction containing mitochondria and plasma membranes. Separation of mitochondria and plasma membranes by centrifugation on discontinuous gradients showed that14C-choline labeled phosphatidylcholine appeared most rapidly in the plasma membranes. The results indicate that phospholipid molecules migrate within a short period of time from their site of synthesis in the NER to plasma membranes.  相似文献   

9.
Chara tomentosa antheridial plasmodesmata are described during proliferation and spermiogenesis. In antheridial filament cells which are cycling completely synchronously, unplugged plasmodesmata are filled with light cytoplasm. The same plasmodesmata are observed after cessation of mitotic division followed by the onset of synchronous spermiogenesis. Walls separating cells at different cell cycle stages and dividing antheridial filaments into asynchronous domains are plugged with a dense osmophilic substance. Similarly plugged plasmodesmata are present between antheridial cells of different types, e.g., capitular cells and antheridial filaments. In mid spermiogenesis when abundant endoplasmic reticulum (ER) appears temporarily it penetrates into plasmodesmata enabling cell-to-cell transport via ER cisternae. In late spermiogenesis there are no cisternae in plasmodesmata. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
To elucidate the mechanism of interorganelle sterol transport, a system to evaluate sterol transport from the endoplasmic reticulum (ER) to the mitochondria was constructed. A bacterial glycerophospholipid: cholesterol acyltransferase fused with a mitochondria-targeting sequence and a membrane-spanning domain of the mitochondrial inner membrane protein Pet100 and enhanced green fluorescent protein was expressed in a Saccharomyces cerevisiae mutant deleted for ARE1 and ARE2 encoding acyl-CoA:sterol acyltransferases. Microscopic observation and subcellular fractionation suggested that this fusion protein, which was named mito-SatA-EGFP, was localized in the mitochondria. Steryl esters were synthesized in the mutant expressing mito-SatA-EGFP. This system will be applicable for evaluations of sterol transport from the ER to the mitochondria in yeast by examining sterol esterification in the mitochondria.  相似文献   

11.
To explore the protective effect of exercise training on the injury of myocardium tissues induced by streptozotocin (STZ) in diabetic rats and the relationship with endoplasmic reticulum stress (ERS), the male sprague-dawley (SD) rats were fed with high-fat and high-sugar diet for 4 weeks, followed by intraperitoneal injection of STZ, 40 mg/kg, to establish a diabetes model, and then 10 rats were randomly selected as diabetes mellitus (DM) controls and 20 eligible diabetic rats were randomized into two groups: low-intensity exercise training (n = 10) and high-intensity exercise training (n = 10). After 12 weeks of exercise training, rats were killed and serum samples were used to determine cardiac troponin-I (cTn-I). Myocardial tissues were sampled for morphological analysis to detect myocardial cell apoptosis, and to analyze protein expression of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), and caspase-12. Different intensities (low and high) significantly reduced serum cTn-I levels compared with the DCM group (p < 0.01), and significantly reduced the percentage of apoptotic myocardial cells and improved the parameters of cardiac function. Hematoxylin and eosin and Masson staining indicated that exercise training could attenuate myocardial apoptosis. Additionally, exercise training significantly reduced GRP78, CHOP, and cleaved caspase-12 protein expression in an intensity-dependent manner. These findings suggest that exercise appeared to ameliorate diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress-induced apoptosis in diabetic rats.  相似文献   

12.
内质网应激反应分子机理研究进展   总被引:21,自引:3,他引:21  
内质网应激是导致心脑组织缺血梗塞、神经退行性疾病等发生的重要环节 .目前发现同型半胱氨酸、氧化应激、钙代谢紊乱等都能引起内质网应激级联反应 ,表现为蛋白质合成暂停、内质网应激蛋白表达和细胞凋亡等 .这些表现包括在未折叠蛋白反应 (UPR)、整合应激反应 (ISR)和内质网相关性死亡 (ERAD)三个相互关联的动态过程中 ,每一过程的分子机理现已逐步被揭示 .作为细胞保护性应对机制的内质网应激体系一旦遭到破坏 ,细胞将不能合成应有的蛋白质 ,亦不能发挥正常的生理功能 ,甚至会出现细胞凋亡 .掌握内质网应激过程对进一步理解多种疾病的发生机理有十分重要的理论意义  相似文献   

13.
The importance of extracellular calcium in epidermal differentiation and intra-epidermal cohesion has been recognized for many years. Darier disease (DD) was the first genetic skin disease caused by abnormal epidermal calcium homeostasis to be identified. DD is characterized by loss of cell-to-cell adhesion and abnormal keratinization. DD is caused by genetic defects in ATP2A2 encoding the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2 (SERCA2). SERCA2 is a calcium pump of the endoplasmic reticulum (ER) transporting Ca2+ from the cytosol to the lumen of ER. ATP2A2 mutations lead to loss of Ca2+ transport by SERCA2 resulting in decreased ER Ca2+ concentration in Darier keratinocytes. Here, we review the role of SERCA2 pumps and calcium in normal epidermis, and we discuss the consequences of ATP2A2 mutations on Ca2+ signaling in DD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

14.
Diverse pathophysiological processes (e.g. obesity, lifespan determination, addiction and male fertility) have been linked to the expression of specific isoforms of the adenylyl cyclases (AC1‐AC10), the enzymes that generate cyclic AMP (cAMP). Our laboratory recently discovered a new mode of cAMP production, prominent in certain cell types, that is stimulated by any manoeuvre causing reduction of free [Ca2+] within the lumen of the endoplasmic reticulum (ER) calcium store. Activation of this ‘store‐operated’ pathway requires the ER Ca2+ sensor, STIM1, but the identity of the enzymes responsible for cAMP production and how this process is regulated is unknown. Here, we used sensitive FRET‐based sensors for cAMP in single cells combined with silencing and overexpression approaches to show that store‐operated cAMP production occurred preferentially via the isoform AC3 in NCM460 colonic epithelial cells. Ca2+ entry via the plasma membrane Ca2+ channel, Orai1, suppressed cAMP production, independent of store refilling. These findings are an important first step towards defining the functional significance and to identify the protein composition of this novel Ca2+/cAMP crosstalk system.  相似文献   

15.
The glutenin fraction of wheat storage proteins consists of large polymers in which high‐ and low‐molecular‐weight subunits are connected by inter‐chain disulfide bonds. We found that assembly of a low‐molecular‐weight glutenin subunit in the endoplasmic reticulum is a rapid process that leads to accumulation of various oligomeric forms, and that this assembly is sensitive to perturbation of the cellular redox environment. In endoplasmic reticulum‐derived microsomes, low‐molecular‐weight glutenin subunits are subjected to hyper‐polymerization, indicating that cytosolic factors play an important role in limiting polymer size. Addition of physiological concentrations of reduced glutathione is sufficient to maintain the original polymerization pattern of the glutenin subunits upon cytosol dilution. Furthermore, we show that a low‐molecular‐weight glutenin subunit can be glutathionylated in endoplasmic reticulum‐derived microsomes, and that it can be directly reduced by glutathione in vitro. These results indicate that glutenin polymerization is sensitive to changes in the redox state of the cell, and suggest that the presence of a reducing cytosolic environment plays an important role in regulating disulfide bond formation in the endoplasmic reticulum of plant cells.  相似文献   

16.
The entry of substrates into, and the export of glururonides from, the lumen of hepatic endoplasmic reticulum (ER) in vitro (sealed microsomes) has been measured using radioactivity-labelled materials and a rapid filtration assay. Analysis of liver microsomes from a jaundiced patient showed the accumulation of bilirubin glucuronides within the lumen of the ER. Further analysis of these hepatic microsomes revealed that newly synthesized 1-naphthol glucuronide could exit from the microsomes whereas billrubin glucuronide was accumulated within the microsomes. These results suggest the existence of mechanisms for the sorting of small molecules, destined for export through bile canalicular or basolateral plasma membranes, by ER. Furthermore, these sorting processes may be regulated by specific transporters within the ER.  相似文献   

17.
The ryanodine receptor (RyR) is a Ca2+ release channel located in the sarcoplasmic/endoplasmic reticulum (ER) membrane and plays a critical role in excitation-contraction coupling of skeletal and cardiac muscles. RyR normally exists in a tetrameric structure and contains two functional domains: a carboxyl-terminal hydrophobic domain that contains the conduction pore of the Ca2+ release channel, and a large amino-terminal domain that contains sites responsible for channel regulation. Recent studies involving mutagenesis and heterologous expression have helped unravel the structure-function relationship of RyR, including transmembrane topology and intracellular localization of the Ca2+-release channel. The carboxyl-terminal portion of RyR contains the putative transmembrane segments and is sufficient to form a functional Ca2+-release channel. The amino-terminal region of the protein contains sites responsible for regulation by endogenous modulators such as Ca2+ and Mg2+ and by exogenous ligands such as caffeine. The membrane topology of RyR appears to contain an even number (four or six) of transmembrane segments with a ion selectivity filter present within a region residing between the last two segments, similar to potassium channel, whose atomic structure was described recently. The transmembrane segments also contain sequences that are responsible for localization of RyR in the endoplasmic reticulum, and this sequence is highly conserved in IP3 receptors, which also function as Ca2+-release channels.  相似文献   

18.
The vast majority of malaria mortality is attributed to one parasite species: Plasmodium falciparum. Asexual replication of the parasite within the red blood cell is responsible for the pathology of the disease. In Plasmodium, the endoplasmic reticulum (ER) is a central hub for protein folding and trafficking as well as stress response pathways. In this study, we tested the role of an uncharacterised ER protein, PfGRP170, in regulating these key functions by generating conditional mutants. Our data show that PfGRP170 localises to the ER and is essential for asexual growth, specifically required for proper development of schizonts. PfGRP170 is essential for surviving heat shock, suggesting a critical role in cellular stress response. The data demonstrate that PfGRP170 interacts with the Plasmodium orthologue of the ER chaperone, BiP. Finally, we found that loss of PfGRP170 function leads to the activation of the Plasmodium eIF2α kinase, PK4, suggesting a specific role for this protein in this parasite stress response pathway.  相似文献   

19.
In this paper we review some of the large quantities of information currently available concerning the identification, structure and function of Ca2+-binding proteins of endoplasmic and sarcoplasmic reticulum membranes. The review places particular emphasis on identification and discussion of Ca2+ storage proteins in these membranes. We believe that the evidence reviewed here supports the contention that the Ca2+-binding capacity of both calsequestrin and calreticulin favor their contribution as the major Ca2+-binding proteins of muscle and nonmuscle cells, respectively. Other Ca2+-binding proteins discovered in both endoplasmic reticulum and sarcoplasmic reticulum membranes probably contribute to the overall Ca2+ storage capacity of these membrane organelles, and they also play other important functional role such as posttranslational modification of newly synthesized proteins, a cytoskeletal (structural) function, or movement of Ca2+ within the lumen of the sarcoplasmic/endoplasmic reticulum towards the storage sites.Abbreviations SR Sarcoplasmic Reticulum - ER Endoplasmic Reticulum - InsP3 Inositol 1,4,5-trisphosphate - SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - PDI Protein Disulphide Isomerase - T3BP Thyroid Hormone Binding Protein - Grp Glucose regulated proteins - HCP Histidine-rich Ca2+ binding Protein - LDL Low Density Lipoprotein  相似文献   

20.
We previously showed that changes in calcium concentrations were related to cell apoptosis in vitro. The endoplasmic reticulum (ER) is the main component of calcium storage and signal transduction, and disrupting the balance of intracellular Ca2+ can cause endoplasmic reticulum stress (ERS). In this process, the ER releases stored Ca 2+ into the cytoplasm and activates calpain-2. To further investigate the effect of calpain in hepatic stellate cells (HSCs), in the current study, we examine the effect of N-acetyl-leu-leu-norleucinal (ALLN) on apoptosis resulting from calcium ionophore A23187–induced ERS. Our findings indicate that calpain inhibition reduces calcium ionophore A23187–induced apoptosis of HSCs and decreases the expression of ER stress proteins that may be related to the calpain/caspase signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号