首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of proteins into the nucleus is a receptor-mediated process that is likely to involve between 50-100 gene products, including many that comprise the nuclear pore complex. We have developed an assay in Saccharomyces cerevisiae for the nuclear transport of green fluorescent protein fused to the SV-40 large T antigen nuclear localization signal (NLS-GFP). This assay allows the measurement of relative NLS-GFP nuclear import rates in wild-type and mutant cells under various physiological conditions. Probably the best understood component of the nuclear transport apparatus is Srp1p, the NLS receptor, which binds NLS-cargo in the cytoplasm and accompanies it into the nucleus. When compared to SRP1+ cells, NLS-GFP import rates in temperature-sensitive srp1-31 cells were slower and showed a lower temperature optimum. The in vivo transport defect of the srp1-31 cells was correlated with the purified protein's thermal sensitivity, as assayed by in vitro NLS peptide binding. We show that the kinetics of NLS-directed nuclear transport in wild-type cells is stimulated by the elevated expression of SSA1, which encodes a cytoplasmic heat shock protein 70 (Hsp70). Elevated Hsp70 levels are sufficient to suppress the NLS-GFP import defects in srp1-31 and nup82-3 cells. NUP82 encodes a protein that functions within the nuclear pore complex subsequent to docking. These results provide genetic evidence that Hsp70 acts during both targeting and translocation phases of nuclear transport, possibly as a molecular chaperone to promote the formation and stability of the Srp1p-NLS-cargo complex.  相似文献   

2.
《The Journal of cell biology》1986,103(6):2083-2089
A monoclonal antibody (mAB 1C4C10) that reacts specifically with human nuclear proteins IEF 8Z30 and 8Z31 (charge variants; HeLa protein catalogue number; Bravo, R., and J. E. Celis, 1982, Clin. Chem., 28:766- 781) has been microinjected into the cytoplasm of cultured cells that either express (primates) or lack these proteins (at least having similar molecular weights and pIs; other species), and its cellular localization has been determined by indirect immunofluorescence. Nuclear localization (nucleolar and nucleoplasmic) of the antibody was observed only in cells expressing these antigens, suggesting that a determinant present in IEF 8Z30 and 8Z31 is required for cytoplasm- nuclear translocation. Nuclear migration was not inhibited by cycloheximide, implying that these proteins may shuttle between nucleus and cytoplasm. The results assumed to support the signal rather than the free diffusion model are further supported by microinjection experiments using antibodies (proliferating cell nuclear antigen/cyclin, DNA) that react with nuclear components but do not recognize cytoplasmic antigens. Furthermore, they raise the possibility that some nonnuclear proteins may be transported to the nucleus by interacting with proteins harboring nuclear location signals.  相似文献   

3.
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.  相似文献   

4.
We have expressed two T7 RNA polymerase genes by electroporation into tobacco protoplasts. One of the genes was modified by inserting nucleotides encoding a viral nuclear localization signal (NLS) from the large T antigen of SV40. Both T7 RNA polymerase genes directed synthesis of a ca. 100 kDa protein in the electroporated protoplasts. T7 RNA polymerase activity was detected in extracts of protoplasts electroporated with both genes. Immunofluorescence analysis of these protoplasts indicated that only the polymerase carrying the NLS accumulated in the cell nucleus. These experiments suggest that mechanisms involved in the transport from the cytoplasm to the nucleus are similar in plant and animal cells. This system demonstrates the feasibility of T7 RNA polymerase-based approaches for the high-level expression of introduced genes in plant cells.  相似文献   

5.
M F Chang  S C Chang  C I Chang  K Wu    H Y Kang 《Journal of virology》1992,66(10):6019-6027
Hepatitis delta antigen (HDAg) is the only known protein of hepatitis delta virus and was previously shown to localize in the nucleoplasm of infected liver cells. In this study, nuclear localization signals of HDAg were defined by expressing various domains of the antigen in both hepatic and nonhepatic cells as beta-galactosidase fusion proteins. A cytochemical staining assay demonstrated that a domain from amino acid residues 35 to 88 of HDAg was able to facilitate transport to the nucleus of the originally cytoplasm-localized protein beta-galactosidase. Two nuclear localization signals, NLS1 and NLS2, which are similar to those of simian virus 40 T antigen and polyomavirus T antigen, respectively, were identified. Either NLS1 or NLS2 alone was sufficient for the nuclear transport of HDAg. However, a fusion protein (N65Z) containing beta-galactosidase and the N-terminal 65 amino acids of HDAg, containing NLS1, was localized exclusively in the cytoplasm and perinuclear region. A possible hydrophobic subdomain between amino acid residues 50 and 65 may block the function of NLS1. Nevertheless, N65Z could enter the nuclei of transfected cells when it was coexpressed with full-length HDAg. Entry into the nucleus may be mediated by the coiled-coil structure rather than the putative leucine zipper motif located between amino acid residues 35 and 65. The existence of two independent nuclear localization signals may ensure the proper functioning of HDAg in the multiplication of delta virus in the nucleus. In addition, two putative casein kinase II sites (SRSE-5 and SREE-126) that may be important in controlling the rate of nuclear transport were found in HDAg.  相似文献   

6.
Nuclear protein import: specificity for transport across the nuclear pore   总被引:13,自引:0,他引:13  
Transport of proteins into the cell nucleus is thought to require specific localization sequences and may be mediated by nuclear pores. Following microinjection into fused cultured cells, nuclear protein import was directly monitored by fluorescence microscopy using B-phycoerythrin (PE; Mr 240,000) coupled to synthetic peptides corresponding to the simian virus 40 (SV-40) large T antigen nuclear localization signal. Peptides with a single amino acid replacement found in a cytoplasmic mutant of T antigen (cT) failed to promote uptake. Further studies with deletion peptides revealed the minimum sequence requirements for efficient nuclear import of PE conjugates to be similar to those previously defined genetically for large T antigen itself. No competitive inhibition of uptake was observed in cells expressing nuclear or cytoplasmic T antigen. Nuclear import was time- and temperature-dependent. The lectin wheat germ agglutinin (WGA) binds to glycoproteins bearing O-linked GlcNAc on the cytoplasmic face of the nuclear pore in vitro [J.A. Hanover et al. (1987) J. Biol. Chem. 262, 9887-9894] and in vivo. Microinjection of WGA into the cytoplasm of living cells did not alter the diffusion of dextran (Mr 10,000) into the nucleus, but blocked the uptake of PE conjugates. This inhibition was reversed when a competing saccharide was introduced into the cytoplasm.  相似文献   

7.
Nuclear protein transport processes have largely been studied using in vitro semi‐intact cell systems where high concentrations of nuclear localizing substrates are used, and cytoplasmic components such as the microtubule (MT) network, are either absent or damaged. Here we use the fluorescence recovery after photobleaching (FRAP) technique to analyze the nucleocytoplasmic flux of distinct fluorescently tagged proteins over time in living cultured cells. FRAP was performed in different parts of the cell to analyze the kinetics of nucleocytoplasmic trafficking and intranuclear/cytoplasmic mobility of the tumor suppressor Rb protein and a SV40 large tumor antigen (T‐ag) derivative containing the nuclear localization sequence (NLS), both fused to green fluorescent protein (GFP). The results indicate that proteins carrying the T‐ag NLS are highly mobile in the nucleus and cytoplasm. Rb, in contrast, is largely immobile in both cellular compartments, with similar nuclear import and export kinetics. Rb nuclear export was CRM‐1‐mediated, with its reduced mobility in the cytoplasm in part due to association with MTs. Overall our results show that nuclear and cytoplasm retention modulates the rates of nuclear protein import and export in intact cells. J. Cell. Biochem. 107: 1160–1167, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
We recently showed that a nuclear location signal (NLS)-containing karyophile forms a stable complex with cytoplasmic components for nuclear pore-targeting The complex, termed nuclear pore-targeting complex (PTAC), contained two essential proteins of 54 and 90 kDa, respectively, as estimated by electrophoresis. In this study, we found that the 54 kDa component of PTAC is the mouse homologue of Xenopus importin (m-importin). Cytoplasmic injection of the antibodies raised against recombinant m-importin showed an inhibitory effect on nuclear import of a karyophile in living mammalian cells. A portion of cytoplasmically injected antibodies migrated rapidly into the nucleus, indicating dynamic movement of this protein across the nuclear envelope. Moreover, the injected antibodies co-precipitated the karyophile, in an NLS-dependent manner, with endogenous m-importin in the cytoplasm. These results provide in vivo evidence that m-importin is involved in nuclear protein import through association with a NLS in the cytoplasm before nuclear pore binding.  相似文献   

9.
Genes encoding the heavy and light chains of a hapten-specific IgM antibody were modified by site-directed mutagenesis to destroy the hydrophobic leader sequences and allow expression in the cytoplasm of non-lymphoid cells. The in situ assembly of the mutant heavy and light chains was tested in transfected cell lines by immunofluorescence using anti-idiotypic antibodies. A positive diffuse cytoplasmic staining was observed. This demonstrated that the antibody polypeptide chains could assemble in the cell cytoplasm and led us to ask whether antibodies could be further targeted to the nucleus. Mutations were therefore made in which the leader sequence of the light chain was replaced by the nuclear localization signal of the SV40 large T antigen. Transfectants in which the heavy chain lacking the hydrophobic leader was expressed together with a light chain carrying the nuclear localization signal were selected and a nuclear distribution of the assembled antibody was found. Thus, it should prove possible to target a specific antibody to the cell nucleus with the aim of interfering with the function of a nuclear antigen.  相似文献   

10.
The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin alpha show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin alpha. The above experimental results lead to the conclusion that importin alpha acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.  相似文献   

11.
One of the major steps limiting nonviral gene transfer efficiency is the entry of plasmid DNA from the cytoplasm into the nucleus of the transfected cells. The nuclear localization signal (NLS) of the SV40 large T antigen is known to efficiently induce nuclear targeting of proteins. We have developed two chemical strategies for covalent coupling of NLS peptides to plasmid DNA. One method involves a site-specific labeling of plasmid DNA by formation of a triple helix with an oligonucleotide–NLS peptide conjugate. After such modification with one NLS peptide per plasmid molecule, plasmid DNA remained fully active in cationic lipid-mediated transfection. In the other method, we randomly coupled 5–115 p-azidotetrafluorobenzyllissamine–NLS peptide molecules per plasmid DNA by photoactivation. Oligonucleotide–NLS and plasmid–lissamine–NLS conjugates interacted specifically with the NLS-receptor importin . Plasmid–lissamine–NLS conjugates were not detected in the nucleus, after cytoplasmic microinjection. Plasmids did not diffuse from the site of injection and plasmid–lissamine–NLS conjugates appeared to be progressively degraded in the cytoplasm. The process of plasmid DNA sequestration/degradation stressed in this study might be as important in limiting the efficiency of nonviral gene transfer as the generally recognized entry step of plasmid DNA from the cytoplasm into the nucleus  相似文献   

12.
Deletion mutants of the rabbit progesterone receptor were used to identify two major mechanisms of its nuclear localization. A putative signal sequence, homologous to that of the SV40 large T antigen, was localized around amino acids 638-642 and shown to be constitutively active. When amino acids 638-642 were deleted, the receptor became cytoplasmic but could be shifted into the nucleus by the addition of hormone (or anti-hormone); it was almost fully active. The second mechanism consisted of the activation of the DNA binding domain. By deleting epitopes recognized by monoclonal antibodies, it was possible to follow different receptor mutants inside the same cells. In the absence of ligand, the receptor was transferred into the nucleus as a monomer. After administration of hormone (or anti-hormone) a "cytoplasmic" monomer was transferred into the nucleus through interaction with a "nuclear" monomer. These interactions occurred through the steroid binding domains of both monomers.  相似文献   

13.
细胞核作为细胞中重要的遗传物质存储、复制和转录的结构,牵涉着大量信息和物质的传输活动,尤其是蛋白质的入核转运一直以来都是研究的热点问题之一。本文利用病毒SV40抗原蛋白中的核定位信号(nuclear localization signal,NLS)标记GFP蛋白,通过拟南芥细胞质的介导,利用HeLa细胞核建立起了研究蛋白质入核转运的半细胞体系。结果显示,植物细胞质结合NLS片段能改变GFP在HeLa细胞核内外的分布,实现对目标蛋白入核过程的介导,使GFP-NLS最后定位于细胞核内。这也意味着通过HeLa细胞建立起的半细胞体系能为蛋白入核转运研究提供一个有效的研究体系。  相似文献   

14.
为鉴定富含脯氨酸核受体辅调节蛋白1(PNRC1)分子的核定位信号序列(nuclear localization signal sequence, NLS),在生物信息学方法预测的基础上,先构建野生型PNRC1及删除预测NLS的PNRC1突变体的绿色荧光蛋白(GFP)重组表达载体,转染细胞后通过激光共聚焦显微镜观察PNRC1分子在删除预测NLS后细胞内的定位变化.然后,将预测的NLS编码序列直接连到GFP表达载体上,以及将预测的NLS加到胞浆蛋白上构建其GFP重组表达载体,转染细胞,观察预测的NLS能否把构建的重组体都带到细胞核内.结果显示,删除PNRC1中预测的NLS后,其定位从细胞核中变为主要定位在细胞浆中,而预测的NLS能把GFP或胞浆中的蛋白带到细胞核中.研究表明,预测的NLS为PNRC1分子真正的NLS.  相似文献   

15.
Nuclear proteins contain a signal, termed the nuclear transport signal, that specifies their selective transport into the nucleus. Previously we reported that antibodies to Asp-Asp-Asp-Glu-Asp (DDDED) inhibited nuclear transport of nuclear proteins in vivo. We therefore tried to detect a cellular receptor of nuclear transport signals as a protein that reacted with both anti-DDDED antibody and nuclear transport signal sequences. Using two steps of affinity chromatography, anti-DDDED-Sepharose and nucleoplasmin-Sepharose, we obtained a protein of 69 kDa (p69) from the nuclear pore fraction that showed these characters. This p69 recognized by anti-DDDED antibody interacted specifically with SV40 large T antigen and nucleoplasmin transport signals.  相似文献   

16.
The transport of proteins into the nucleus requires the recognition of a nuclear localization signal sequence. Several proteins that interact with these sequences have been identified, including one of about 66 kDa. We have prepared antibodies that recognize the 66-kDa nuclear localization signal binding protein (NLSBP) and inhibit nuclear localization in vitro. By immunofluorescence, it is seen that the NLSBP is predominantly cytoplasmic and is distributed peripherally around the nucleus and the microtubule organizing center. There is also a weak punctate staining of the surface of the nucleus. Methanol-fixed cells can also be stained directly with fluorescently labeled karyophilic proteins. These stains reveal the same cytoplasmic structures as anti-NLSBP. The expression of the NLSBP is growth dependent. When cells grown to confluence are examined, the cytoplasmic staining is greatly reduced, leaving the punctate nuclear staining as the predominant feature. In serum-starved cells, very little staining of either the cytoplasm or the nucleus can be seen. Upon simulation by the addition of serum, the original cytoplasmic and nuclear envelope staining is restored. Cells grown in the presence of colchicine or taxol have an altered NLSBP distribution but apparently normal cytoplasmic nuclear transport.  相似文献   

17.
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.  相似文献   

18.
19.
Monoclonal antibody to simian virus 40 small t.   总被引:11,自引:6,他引:5       下载免费PDF全文
A monoclonal antibody, PAb280, was produced that recognizes simian virus 40 (SV40) small t but does not react with SV40 large T. The specificity of the antibody was analyzed by immunoprecipitation of labeled cell extracts, Western blotting, and immunocytochemistry. Small t was found to accumulate late in the SV40 lytic cycle and was localized in both the cytoplasm and the nucleus of cells infected with wild-type SV40. Importantly, antibodies against determinants common to SV40 large T and small t did not appear to be able to recognize the cytoplasmic form of SV40 small t at the immunocytochemical level. The localization of small t within the nucleus appeared to be distinct from that of large T.  相似文献   

20.
Nuclear import and export of influenza virus nucleoprotein.   总被引:11,自引:4,他引:7       下载免费PDF全文
Influenza virus nucleoprotein (NP) shuttles between the nucleus and the cytoplasm. A nuclear localization signal (NLS) has been identified in NP at amino acids 327 to 345 (J. Davey et al., Cell 40:667-675, 1985). However, some NP mutants that lack this region still localize to the nucleus, suggesting an additional NLS in NP. We therefore investigated the nucleocytoplasmic transport of NP from influenza virus A/WSN/33 (H1N1). NP deletion constructs lacking the 38 N-terminal amino acids, as well as those lacking the 38 N-terminal amino acids and the previously identified NLS, localized to both the cytoplasm and the nucleus. Nuclear localization of a protein containing amino acids 1 to 38 of NP fused to LacZ proved that these 38 amino acids function as an NLS. Within this region, we identified two basic amino acids, Lys7 and Arg8, that are crucial for NP nuclear import. After being imported into the nucleus, the wild-type NP and the NP-LacZ fusion construct containing amino acids 1 to 38 of NP were both transported back to the cytoplasm, where they accumulated. These data indicate that NP has intrinsic structural features that allow nuclear import, nuclear export, and cytoplasmic accumulation in the absence of any other viral proteins. Further, the information required for nuclear import and export is located in the 38 N-terminal amino acids of NP, although other NP nuclear export signals may exist. Treatment of cells with a protein kinase C inhibitor increased the amounts of nuclear NP, whereas treatment of cells with a phosphorylation stimulator increased the amounts of cytoplasmic NP. These findings suggest a role of phosphorylation in nucleocytoplasmic transport of NP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号