共查询到20条相似文献,搜索用时 0 毫秒
1.
Defective gene in lactic acidosis: abnormal pyruvate dehydrogenase E1 alpha-subunit caused by a frame shift. 总被引:10,自引:6,他引:4 下载免费PDF全文
H Endo K Hasegawa K Narisawa K Tada Y Kagawa S Ohta 《American journal of human genetics》1989,44(3):358-364
A patient with lactic acidosis showed a lowered pyruvate dehydrogenase E1 activity and fatigued on slight exercise. The cDNA encoding the pyruvate dehydrogenase E1 alpha-subunit from his lymphocytes, transformed by infection of Epstein-Barr virus, was cloned and sequenced. The nucleotide sequence determination revealed that the gene had a deletion of four nucleotides at the second codon upstream from the termination codon. This deletion would lead to a reading-frame shift and make a new termination codon at the 33d codon downstream from the "normal" termination codon. An S1 nuclease-protection experiment confirmed the presence of mRNA with its deletion in the patient. Amplification, by the polymerase chain reaction method, of the genomic-DNA region from his peripheral blood cells showed that the deletion was localized in an exon and that it was not caused by an abnormal splicing at the intron/exon junction. This is the first report on cloning a defective gene of the pyruvate dehydrogenase complex. 相似文献
2.
A spectrophotometric assay for the pyruvate dehydrogenase complex (PDHC) has been adapted for use with cultured human firbroblasts. It is a coupled enzyme assay utilizing pigeon liver arylamine acetyltransferase to measure the acetyl-CoA produced by PDHC. Activity is proportional to fibroblasts protein and to tine and depends completely on added pyruvate, CoA and NAD. In extracts in which PDHC had been activated (dephosphorylated) by the method of Sheu et al. (Sheu, R.K.-F., Hu, C.C. and Utter, M.F. (1981) J. Clin. Invest. 67, 1463–1471), activities in control cell lines are 5–50 fold higher than in earlier reports. Low activity has been demonstrated in a line previously eported to be PDHC-deficient. 相似文献
3.
4.
5.
A coupled fluorometric rate assay for pyruvate dehydrogenase in cultured human fibroblasts 总被引:1,自引:0,他引:1
A method for measuring the activity of the pyruvate dehydrogenase complex (PDC) by coupling acetyl-CoA production to acetylation of a fluorescent dye is described. Acetylation of cresyl violet acetate by pigeon liver acetyltransferase results in a shift of its fluorescence spectrum from lambda ex max = 575, lambda em max = 620 nm to lambda ex max = 475, lambda em max = 575 nm. The rate of appearance of acetylated dye was followed fluorometrically and was proportional to PDC activity in extracts of cultured human fibroblasts. The assay showed appropriate substrate and cofactor dependence and had a working range between 0.04 and 70 munits. It is 10 times more sensitive than the spectrophotometric assay on which it is based (working range 0.4-31 munits) and is equally convenient. Unactivated PDC activity in fibroblast extracts was 0.75 (0.60-0.92) munits/mg protein (mean and range for six cell lines). 相似文献
6.
Pyruvate dehydrogenase kinase activity of pig heart pyruvate dehydrogenase (E1 component of pyruvate dehydrogenase complex). 下载免费PDF全文
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded. 相似文献
7.
8.
Longer-term regulation of pyruvate dehydrogenase kinase in cultured rat cardiac myocytes. 总被引:1,自引:0,他引:1 下载免费PDF全文
The increased activity of pyruvate dehydrogenase (PDH) kinase induced in hearts of rats by starvation for 48 h was maintained following preparation of cardiac myocytes, and it was also maintained, though at a decreased level, after 25 h of culture in medium 199. This loss of PDH kinase activity was not prevented by n-octanoate, dibutyryl cyclic AMP or glucagon. The PDH kinase activity of myocytes from fed rats was increased to that of starved rats after 25 h of culture with n-octanoate, dibutyryl cyclic AMP or both agents together. 相似文献
9.
10.
Pyruvate dehydrogenase E1 alpha deficiency: males and females differ yet again. 总被引:2,自引:1,他引:1 下载免费PDF全文
H H Dahl 《American journal of human genetics》1995,56(3):553-557
11.
Pyruvate dehydrogenase (PDH) E1α is a key component in the PDH complex which catalyzes the oxidative decarboxylation of pyruvate
to acetyl-CoA. Defects in the gene coding for PDH E1α (PDHA1) are associated with a variety of clinical symptoms, often of
a severe character. In the present study, the segregation of three polymorphic CA repeats located in PDHA1 was followed in
the 40 CEPH reference pedigrees. Using these data, multipoint linkage analysis was carried out, refining the genetic location
of PDHA1. The 16-point map presented locates PDHA1 in an approximately 3-cM interval between DXS999 and DXS365 with odds of
more than 1000 : 1. From known physical localizations of the flanking marker loci, PDHA1 could be regionally assigned to Xp22.1-p22.2.
The information provided should be of value in clinical settings.
Received: 10 May 1996 相似文献
12.
Platelets exposed to collagen sufficient to stimulate the release reaction show an increase in labeling of two intracellular proteins with molecular weights of 20,000 and 42,000. The 20,000 Mr protein has already been identified as the light chain of myosin whereas the identity of the 42,000 Mr protein had not been established. By use of biochemical and immunological techniques, the identify of the 42,000 Mr component of prelabeled platelets found in the 100,000g supernatant of freeze-thawed or sonicated cells appears to be one of the subunits of pyruvate dehydrogenase complex which is translocated from the mitochondria to the 100,000g supernatant during the preparative procedure. Increased phosphorylation of the 42,000 Mr protein occurred after collagen stimulation and was accompanied by diminished pyruvate dehydrogenase activity. 相似文献
13.
14.
15.
Osteoarthritis (OA) is the most common degenerative joint disease and a major cause of age-related disability worldwide, mainly due to pain, the disease's main symptom. Although OA was initially classified as a non-inflammatory joint disease, recent attention has been drawn to the importance of synovitis and fibroblast-like synoviocytes (FLS) in the pathogenesis of OA. FLS can be divided into two major populations: thymus cell antigen 1 (THY1)- FLS are currently classified as quiescent cells and assumed to destroy bone and cartilage, whereas THY1+ FLS are invasively proliferative cells that drive synovitis. Both THY1- and THY1+ FLS share many characteristics with fibroblast-like progenitors – mesenchymal stromal cells (MSC). However, it remains unclear whether synovitis-induced metabolic changes exist in FLS from OA patients and whether metabolic differences may provide a mechanistic basis for the identification of approaches to precisely convert the pathologically proliferative synovitis-driven FLS phenotype into a healthy one. To identify novel pathological mechanisms of the perpetuation and manifestation of OA, we analyzed metabolic, proteomic, and functional characteristics of THY1+ FLS from patients with OA. Proteome data and pathway analysis revealed that an elevated expression of pyruvate dehydrogenase kinase (PDK) 3 was characteristic of proliferative THY1+ FLS from patients with OA. These FLS also had the highest podoplanin (PDPN) expression and localized to the sublining but also the lining layer in OA synovium in contrast to the synovium of ligament trauma patients. Inhibition of PDKs reprogrammed metabolism from glycolysis towards oxidative phosphorylation and reduced FLS proliferation and inflammatory cytokine secretion. This study provides new mechanistic insights into the importance of FLS metabolism in the pathogenesis of OA. Given the selective overexpression of PDK3 in OA synovium and its restricted distribution in synovial tissue from ligament trauma patients and MSC, PDKs may represent attractive selective metabolic targets for OA treatment. Moreover, targeting PDKs does not affect cells in a homeostatic, oxidative state. Our data provide an evidence-based rationale for the idea that inhibition of PDKs could restore the healthy THY1+ FLS phenotype. This approach may mitigate the progression of OA and thereby fundamentally change the clinical management of OA from the treatment of symptoms to addressing causes. 相似文献
16.
17.
Phosphorylation of additional sites on pyruvate dehydrogenase inhibits its re-activation by pyruvate dehydrogenase phosphate phosphatase. 下载免费PDF全文
The phosphorylation of sites additional to an inactivating site inhibits the formation of active pig heart pyruvate dehydrogenase complex from inactive pyruvate dehydrogenase phosphate complex by pig heart pyruvate dehydrogenase phosphate phosphatase. 相似文献
18.
Dephosphorylation of pig heart pyruvate dehydrogenase phosphate complexes by pig heart pyruvate dehydrogenase phosphate phosphatase. 下载免费PDF全文
1. Pig heart pyruvate dehydrogenase phosphate complex in which all three sites of phosphorylation were completely phosphorylated was re-activated at a slower rate by phosphatase than complex predominantly phosphorylated in site 1. The ratio of initial rates of re-activation was approx. 1:5 with a comparatively crude preparation of phosphatase and with phosphatase purified by gel filtration and ion-exchange chromatography. 2. The ratio of apparent first-order rate constants during dephosphorylation of fully phosphorylated complex averaged 1/3.8/1.3 for site 1/site 2/site 3. Only site-1 dephosphorylation was linearly correlated with re-activation of the complex throughout dephosphorylation. Dephosphorylation of site 3 was linearly correlated with re-activation after an initial burst of dephosphorylation. 3. Because dephosphorylation of site 1 was always associated with dephosphorylation of site 2, it is concluded that dephosphorylation cannot be purely random. 4. The ratio of apparent first-order rate constants for dephosphorylation of site 1 (partially/fully phosphorylated complexes) averaged 1.72. This ratio is smaller than the ratio of approx. 5 for the initial rates of re-activation. Possible mechanisms involved in the diminished rate of re-activation of fully phosphorylated complex are discussed. 相似文献
19.
The mechanism for the inhibition of pyruvate dehydrogenase complex from bovine heart by moniliformin was investigated. Thiamin pyrophosphate proved to be necessary for the inhibitory action of moniliformin. The inhibition reaction was shown to be time-dependent and to follow first-order and saturation kinetics. Pyruvate protected the pyruvate dehydrogenase complex against moniliformin inactivation. Extensive dialysis of the moniliformin-inactivated complex only partially reversed inactivation. Moniliformin seems to act by inhibition of the pyruvate dehydrogenase component of the enzyme complex and not by acting on the dihydrolipoamide transacetylase or dehydrogenase components, as shown by monitoring the effect of moniliformin on each component individually. On the basis of these results, a suicide inactivator mechanism for moniliformin on pyruvate dehydrogenase is proposed. 相似文献