首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Purification of hepatitis C virus (HCV) from sera of infected patients has proven elusive, hampering efforts to perform structure-function analysis of the viral components. Recombinant forms of the viral glycoproteins have been used instead for functional studies, but uncertainty exists as to whether they closely mimic the virion proteins. Here, we used HCV virus-like particles (VLPs) generated in insect cells infected with a recombinant baculovirus expressing viral structural proteins. Electron microscopic analysis revealed a population of pleomorphic VLPs that were at least partially enveloped with bilayer membranes and had viral glycoprotein spikes protruding from the surface. Immunogold labeling using specific monoclonal antibodies (MAbs) demonstrated these protrusions to be the E1 and E2 glycoproteins. A panel of anti-E2 MAbs was used to probe the surface topology of E2 on the VLPs and to compare the antigenicity of the VLPs with that of truncated E2 (E2(660)) or the full-length (FL) E1E2 complex expressed in mammalian cells. While most MAbs bound to all forms of antigen, a number of others showed striking differences in their abilities to recognize the various E2 forms. All MAbs directed against hypervariable region 1 (HVR-1) recognized both native and denatured E2(660) with comparable affinities, but most bound either weakly or not at all to the FL E1E2 complex or to VLPs. HVR-1 on VLPs was accessible to these MAbs only after denaturation. Importantly, a subset of MAbs specific for amino acids 464 to 475 and 524 to 535 recognized E2(660) but not VLPs or FL E1E2 complex. The antigenic differences between E2(660,) FL E1E2, and VLPs strongly point to the existence of structural differences, which may have functional relevance. Trypsin treatment of VLPs removed the N-terminal part of E2, resulting in a 42-kDa fragment. In the presence of detergent, this was further reduced to a trypsin-resistant 25-kDa fragment, which could be useful for structural studies.  相似文献   

3.
Conserved histidine residues have been implicated in the geometry and catalytic mechanism of the E(1)alpha proteins of the PDH complex. We constructed and expressed a series of PDH-E(1)alpha histidine mutants (H63, H84, H92, and H263) in a cell line with zero PDH complex activity due to a null E(1)alpha allele. Based on immunoblot and enzyme activity analyses, all introduced histidine mutations, with the exception of H92, affected the specific activity of the PDH complex. We showed that H63 and H263 are essential for the activity since mutations introduced at those sites produced a PDH complex with near-zero activity. Mutations introduced at H84 only partially reduced activity, implying that H84 may play a less critical role in the PDH complex. Mutations introduced at H92 caused the absence of immunoreactive material for both the E(1)alpha and E(1)beta subunits and may have impaired import or assembly of precursor peptides into the mature PDH complex.  相似文献   

4.
The relict plastid (apicoplast) of apicomplexan parasites synthesizes fatty acids and is a promising drug target. In plant plastids, a pyruvate dehydrogenase complex (PDH) converts pyruvate into acetyl-CoA, the major fatty acid precursor, whereas a second, distinct PDH fuels the tricarboxylic acid cycle in the mitochondria. In contrast, the presence of genes encoding PDH and related enzyme complexes in the genomes of five Plasmodium species and of Toxoplasma gondii indicate that these parasites contain only one single PDH. PDH complexes are comprised of four subunits (E1alpha, E1beta, E2, E3), and we confirmed four genes encoding a complete PDH in Plasmodium falciparum through sequencing of cDNA clones. In apicomplexan parasites, many nuclear-encoded proteins are targeted to the apicoplast courtesy of two-part N-terminal leader sequences, and the presence of such N-terminal sequences on all four PDH subunits as well as phylogenetic analyses strongly suggest that the P. falciparum PDH is located in the apicoplast. Fusion of the two-part leader sequences from the E1alpha and E2 genes to green fluorescent protein experimentally confirmed apicoplast targeting. Western blot analysis provided evidence for the expression of the E1alpha and E1beta PDH subunits in blood-stage malaria parasites. The recombinantly expressed catalytic domain of the PDH subunit E2 showed high enzymatic activity in vitro indicating that pyruvate is converted to acetyl-CoA in the apicoplast, possibly for use in fatty acid biosynthesis.  相似文献   

5.
6.
The pyruvate dehydrogenase (E1) and acetyltransferase (E2) components of pig heart and ox kidney pyruvate dehydrogenase (PDH) complex were separated and purified. The E1 component was phosphorylated (alpha-chain) and inactivated by MgATP. Phosphorylation was mainly confined to site 1. Addition of E2 accelerated phosphorylation of all three sites in E1 alpha and inactivation of E1. On the basis of histone H1 phosphorylation, E2 is presumed to contain PDH kinase, which was removed (greater than 98%) by treatment with p-hydroxymercuriphenylsulphonate. Stimulation of ATP-dependent inactivation of E1 by E2 was independent of histone H1 kinase activity of E2. The effect of E2 is attributed to conformational change(s) induced in E1 and/or E1-associated PDH kinase. PDH kinase activity associated with E1 could not be separated from it be gel filtration or DEAE-cellulose chromatography. Subunits of PDH kinase were not detected on sodium dodecyl sulphate/polyacrylamide gels of E1 or E2, presumably because of low concentration. The activity of pig heart PDH complex was increased by E2, but not by E1, indicating that E2 is rate-limiting in the holocomplex reaction. ATP-dependent inactivation of PDH complex was accelerated by E1 or by phosphorylated E1 plus associated PDH kinase, but not by E2 plus presumed PDH kinase. It is suggested that a substantial proportion of PDH kinase may accompany E1 when PDH complex is dissociated into its component enzymes. The possibility that E1 may possess intrinsic PDH kinase activity is considered unlikely, but may not have been fully excluded.  相似文献   

7.
The antigenic relationships among seven feline coronavirus isolates were investigated by using a panel of 26 monoclonal antibodies (MAbs). The MAbs were categorized into five immunoreactive groups which were used to delineate two antigenic types of feline coronaviruses. One antigenic type included the more virulent feline infectious peritonitis virus (FIPV) isolates (FIPV-UCD-1, FIPV-UCD-4, FIPV-TN406, FIPV-DF2, and FIPV-79-1146), whereas the second antigenic type was composed of the avirulent isolate FIPV-UCD-2. The feline enteric coronavirus isolate FECV-79-1683 shared some characteristics of both of the major antigenic groups. Epitopes on the nucleocapsid and envelope polypeptides were in general highly conserved among both antigenic types, although a few type-specific antigenic sites were discriminated. The most striking finding was the marked antigenic difference in the peplomer (E2) glycoproteins between the two antigenic types. Seven anti-E2 MAbs reacted with one antigenic type of E2, whereas seven other anti-E2 MAbs recognized a different antigenic form of E2. None of the 14 anti-E2 MAbs reacted with all of the isolates.  相似文献   

8.
J E Lawson  R H Behal  L J Reed 《Biochemistry》1991,30(11):2834-2839
Disruption of the PDX1 gene encoding the protein X component of the mitochondrial pyruvate dehydrogenase (PDH) complex in Saccharomyces cerevisiae did not affect viability of the cells. However, extracts of mitochondria from the mutant, in contrast to extracts of wild-type mitochondria, did not catalyze a CoA- and NAD(+)-linked oxidation of pyruvate. The PDH complex isolated from the mutant cells contained pyruvate dehydrogenase (E1 alpha + E1 beta) and dihydrolipoamide acetyltransferase (E2) but lacked protein X and dihydrolipoamide dehydrogenase (E3). Mutant cells transformed with the gene for protein X on a unit-copy plasmid produced a PDH complex that contained protein X and E3, as well as E1 alpha, E1 beta, and E2, and exhibited overall activity similar to that of the wild-type PDH complex. These observations indicate that protein X is not involved in assembly of the E2 core nor is it an integral part of the E2 core. Rather, protein X apparently plays a structural role in the PDH complex; i.e., it binds and positions E3 to the E2 core, and this specific binding is essential for a functional PDH complex. Additional evidence for this conclusion was obtained with deletion mutations. Deletion of most of the lipoyl domain (residues 6-80) of protein X had little effect on the overall activity of the PDH complex. This observation indicates that the lipoyl domain, and its covalently bound lipoyl moiety, is not essential for protein X function. However, deletion of the putative subunit binding domain (residues approximately 144-180) of protein X resulted in loss of high-affinity binding of E3 and concomitant loss of overall activity of the PDH complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex from the yeast Saccharomyces cerevisiae were purified. Antibodies raised against these subunits were used to clone the corresponding genes from a genomic yeast DNA library in the expression vector lambda gt11. The gene encoding the E1 alpha subunit was unique and localized on a 1.7-kb HindIII fragment from chromosome V. The identify of the gene was confirmed in two ways. (a) Expression of the gene in Escherichia coli produced a protein that reacted with the anti-E1 alpha serum. (b) Gene replacement at the 1.7-kb HindIII fragment abolished both pyruvate dehydrogenase activity and the production of proteins reacting with anti-E1 alpha serum in haploid cells. In addition, the 1.7-kb HindIII fragment hybridized to a set of oligonucleotides derived from amino acid sequences from the N-terminal and central regions of the human E1 alpha peptide. We propose to call the gene encoding the E1 alpha subunit of the yeast pyruvate dehydrogenase complex PDA1. Screening of the lambda gt11 library using the anti-E1 beta serum resulted in the reisolation of the RAP1 gene, which was located on chromosome XIV.  相似文献   

10.
11.
Pyruvate dehydrogenase (PDH) complex deficiency is a major cause of lactic acidosis and Leigh's encephalomyelopathies in infancy and childhood, resulting in early death in the majority of patients. Most of the molecular defects have been localized in the coding regions of the E1alpha PDH gene. Recently, we identified a novel mutation of the E1alpha PDH gene in a patient with an encephalopathy and lactic acidosis. This mutation, located downstream of exon 7, activates a cryptic splice donor and leads to the retention of intronic sequences. Here, we demonstrate that the mutation results in an increased binding of the SR protein SC35. Consistently, ectopic overexpression of this splicing factor enhanced the use of the cryptic splice site, whereas small interfering RNA-mediated reduction of the SC35 protein levels in primary fibroblasts from the patient resulted in the almost complete disappearance of the aberrantly spliced E1alpha PDH mRNA. Our findings open the exciting prospect for a novel therapy of an inherited disease by altering the level of a specific splicing factor.  相似文献   

12.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

13.
Neuroadapted Sindbis virus (NSV) causes acute encephalitis and paralyzes and kills adult mice unless they are treated with primary immune serum after infection. To study the nature and specificity of curative antibodies, we gave mice 30 different monoclonal antibodies (MAbs) against Sindbis virus (SV) 24 h after lethal intracerebral inoculation of NSV. By the time of MAb treatment, NSV replication in the brain had been well established (7.5 X 10(7) PFU/g). Seventeen MAbs directed against multiple biological domains on the NSV E1 and E2 envelope glycoproteins prevented paralysis and death. Anticapsid MAbs failed to protect. Altogether, 15 of 17 curative MAbs either neutralized NSV infectivity or lysed NSV-infected cells with complement, but neither ability was necessary or sufficient to guarantee recovery. All 5 protective anti-E2 MAbs neutralized NSV infectivity; 6 of 10 protective anti-E1 MAbs neutralized NSV; 4 did not. Plaque assay or immunohistochemical staining showed that neutralizing and nonneutralizing curative MAbs decreased NSV in the brain, brainstem, and spinal cord. Despite high neutralization titers, hyperimmune anti-SV and anti-NSV mouse sera prevented only 6 and 30% of deaths, respectively, while primary immune sera prevented 50 (SV) and 90% (NSV) of deaths. Secondary intravenous immunization with a live virus apparently diminished, obscured, or failed to boost a class of protective antibodies. When separate mouse groups were given these 30 MAbs 24 h before lethal intracerebral inoculation of NSV, a slightly different set of 17 neutralizing or nonneutralizing anti-E1 and anti-E2 antibodies protected. Two nonneutralizing MAbs and hyperimmune anti-SV serum, which had failed to promote recovery, prophylactically protected 100% of the mice. The antibody requirements or mechanisms of prophylaxis and recovery may differ.  相似文献   

14.
15.
The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies (Abs) and vaccine development. Previous studies of human dengue-immune sera reported that a significant proportion of anti-E Abs, known as group-reactive (GR) Abs, were cross-reactive to all four DENV serotypes and to one or more other flaviviruses. Based on studies of mouse anti-E monoclonal antibodies (MAbs), GR MAbs were nonneutralizing or weakly neutralizing compared with type-specific MAbs; a GR response was thus not regarded as important for vaccine strategy. We investigated the epitopes, binding avidities, and neutralization potencies of 32 human GR anti-E MAbs. In addition to fusion loop (FL) residues in E protein domain II, human GR MAbs recognized an epitope involving both FL and bc loop residues in domain II. The neutralization potencies and binding avidities of GR MAbs derived from secondary DENV infection were stronger than those derived from primary infection. GR MAbs derived from primary DENV infection primarily blocked attachment, whereas those derived from secondary infection blocked DENV postattachment. Analysis of the repertoire of anti-E MAbs derived from patients with primary DENV infection revealed that the majority were GR, low-avidity, and weakly neutralizing MAbs, whereas those from secondary infection were primarily GR, high-avidity, and potently neutralizing MAbs. Our findings suggest that the weakly neutralizing GR anti-E Abs generated from primary DENV infection become potently neutralizing MAbs against the four serotypes after secondary infection. The observation that the dengue immune status of the host affects the quality of the cross-reactive Abs generated has implications for new strategies for DENV vaccination.  相似文献   

16.
Two distinct types of cDNA clones encoding for the pyruvate dehydrogenase (PDH) E1 beta subunit were isolated from a human liver lambda gt11 cDNA library and characterized. These cDNA clones have identical nucleotide sequences for PDH E1 beta protein coding region but differ in their lengths and in the sequences of their 3'-untranslated regions. The smaller cDNA had an unusual polyadenylation signal within its protein coding region. The cDNA-deduced protein of PDH E1 beta subunit revealed a precursor protein of 359 amino acid residues (Mr 39,223) and a mature protein of 329 residues (Mr 35,894), respectively. Both cDNAs shared high amino acid sequence similarity with that isolated from human foreskin (Koike, K.K., Ohta, S., Urata, Y., Kagawa, Y., and Koike, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 41-45) except for three regions of frameshift mutation. These changes led to dramatic alterations in the local net charges and predicted protein conformation. One of the different sequences in the protein coding region of liver cDNA (nucleotide position 452-752) reported here was confirmed by sequencing the region after amplification of cDNA prepared from human skin fibroblasts by the polymerase chain reaction. Southern blot analysis verified simple patterns of hybridization with E1 beta cDNA, indicating that the PDH E1 beta subunit gene is not a member of a multigene family. The mechanisms of differential expression of the PDH E1 alpha and E1 beta subunits were also studied in established fibroblast cell lines obtained from patients with Leigh's syndrome and other forms of congenital lactic acidosis. In Northern blot analyses for PDH E1 alpha and E1 beta subunits, no apparent differences were observed between two Leigh's syndrome and the control fibroblasts studied: one species of PDH E1 alpha mRNA and three species of E1 beta mRNA were observed in all the cell lines examined. However, in one tricarboxylic acid cycle deficient fibroblast cell line, which has one-tenth of the normal enzyme activity, the levels of immunoreactive PDH E1 alpha and E1 beta subunits were markedly decreased as assessed by immunoblot analyses. These data indicated a regulatory mutation caused by either inefficient translation of E1 alpha and E1 beta mRNAs into protein or rapid degradation of both subunits upon translation. In contrast, the PDH E1 alpha and E1 beta subunits in two fibroblast cell lines from Leigh's syndrome patients appeared to be normal as judged by 1) enzyme activity, 2) mRNA Northern blot, 3) genomic DNA Southern blot, and 4) immunoblot analyses indicating that the lactic acidosis seen in these patients did not result from a single defect in either of these E1 alpha and E1 beta subunits of the PDH complex.  相似文献   

17.
We have previously characterized with monoclonal antibodies (MAbs) seven unique epitopes on the two envelope glycoproteins of Venezuelan equine encephalomyelitis (VEE) virus vaccine strain TC-83. The epitopes important in protection from VEE virus infection were determined in passive antibody transfer studies, with virulent VEE (Trinidad donkey) virus as the challenge virus. Selected high-avidity MAbs to the three major protective epitopes (E2c, E1b, and E1d) were assayed for in vitro complement activity. All three fixed murine complement to high titer. Limited pepsin digestion of the anti-E2c in the presence of cysteine resulted in a rapid decrease and complete loss of complement-fixing ability by 2 h, but the majority of mice, except at the lowest dilution of MAb, were protected until the Fc termini were cleaved at 3 h. Anti-E2c F(ab')2 would neutralize VEE (Trinidad donkey) virus more efficiently than either Fab' or Fab; none of the fragments would fix complement or was effective in passive protection. C5-deficient mice and mice depleted of C3 with cobra venom factor were still protected from VEE (Trinidad donkey) virus challenge after passive transfer of either anti-E2c or anti-E1b MAb. The results show that the anti-E2c MAb mediates neutralization through bivalent binding at a critical site on the virion and that Fc effector functions, other than complement, are necessary for protection. Although the ability of the anti-E2c MAb to fix complement was associated with its ability to protect in vivo, no direct cause-and-effect relationship was found. Since the epitope defined by the anti-E1d antibody is found on the cell membrane, but is not expressed on the infectious virion, protection in mice was most likely mediated at the cellular level, possibly by inhibition of the final stages of virion maturation.  相似文献   

18.
Altered pyruvate dehydrogenase (PDH) functioning occurs in primary PDH deficiencies and in diabetes, starvation, sepsis, and possibly Alzheimer's disease. Currently, the activity of the enzyme complex is difficult to measure in a rapid high-throughput format. Here we describe the use of a monoclonal antibody raised against the E2 subunit to immunocapture the intact PDH complex still active when bound to 96-well plates. Enzyme turnover was measured by following NADH production spectrophotometrically or by a fluorescence assay on mitochondrial protein preparations in the range of 0.4 to 5.0 micro g per well. Activity is sensitive to known PDH inhibitors and remains regulated by phosphorylation and dephosphorylation after immunopurification because of the presence of bound PDH kinase(s) and phosphatase(s). It is shown that the immunocapture assay can be used to detect PDH deficiency in cell extracts of cultured fibroblasts from patients, making it useful in patient screens, as well as in the high-throughput format for discovery of new modulators of PDH functioning.  相似文献   

19.
20.
Two distinguishable activity bands for dye-linked l-proline dehydrogenase (PDH1 and PDH2) were detected when crude extract of the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 was run on a polyacrylamide gel. After purification, PDH1 was found to be composed of two different subunits with molecular masses of 56 and 43 kDa, whereas PDH2 was composed of four different subunits with molecular masses of 52, 46, 20 and 8 kDa. The native molecular masses of PDH1 and PDH2 were 440 and 101 kDa, respectively, indicating that PDH1 has an alpha4beta4 structure, while PDH2 has an alphabetagammadelta structure. PDH2 was found to be similar to the dye-linked l-proline dehydrogenase complex from Thermococcus profundus, but PDH1 is a different type of enzyme. After production of the enzyme in Escherichia coli, high-performance liquid chromatography showed the PDH1 complex to contain the flavins FMN and FAD as well as ATP. Gene expression and biochemical analyses of each subunit revealed that the beta subunit bound FAD and exhibited proline dehydrogenase activity, while the alpha subunit bound ATP, but unlike the corresponding subunit in the T. profundus enzyme, it exhibited neither proline dehydrogenase nor NADH dehydrogenase activity. FMN was not bound to either subunit, suggesting it is situated at the interface between the alpha and beta subunits. A comparison of the amino-acid sequences showed that the ADP-binding motif in the alpha subunit of PDH1 clearly differs from that in the alpha subunit of PDH2. It thus appears that a second novel dye-linked l-proline dehydrogenase complex is produced in P. horikoshii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号