首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Measurements of residual haematin in males of Glossina morsitans morsitans Westwood reared in the laboratory at 25oC suggest that blood meal digestion is completed in 4 or 5 days after feeding. However, a high proportion of haematin is present as faecal matter 2 days after feeding and it is concluded that digestion is completed sooner than indicated by the regression of logio haematin on time. Therefore, low levels of residual haematin in field-caught tsetse provide no indication of the frequency with which they feed. For this reason the effects of feeding frequency upon various reproductive parameters in the laboratory have been examined. It is concluded that the best performance is achieved by G.m. morsitans females which ingest four blood meals per inter-larval period and that for a similar performance in G.pallidipes five blood meals are required. The extent to which such feeding frequencies are a reflection of feeding activity in the field are discussed in terms of the biochemical requirements to maintain a reproductive adult female tsetse in positive energy balance.  相似文献   

2.
When exposed to a human host, Anopheles gambiae started probing 4 h post-eclosion, but 95% successfully blood-fed by 16-20 h with maximal blood volumes of 5- 10 microl per female. When fed sugar, the 95% feeding was not observed until 36-40 h post-eclosion; sugar meals appeared to interfere with blood meals. Similarly in An. atroparvus, maximum volumes were 10 microl when starved but only 6 microl when fed sugar. This species did not bite before 2 d, and 95% biting was by 4 d. Given single blood meals to water-kept An. gambiae, a threshold body size for oogenesis was detected. With wing lengths below 2.8 mm, eggs never matured, but when sugar-fed, females of all sizes matured eggs including the synthesis of maternal deposits. Although sugar feeding interfered with blood feeding, more lipid was transferred to the yolk. In water-kept An. atroparvus only 5% of the females produced eggs. When sugar-fed for 4 d, all females matured eggs, so in this species sugar feeding appeared to be essential for oogenesis. An. gambiae always took multiple blood meals, tested at any time after the first ones, leading to 120 mature eggs/female. Yolk composition was 3.9 mcal protein and 3.8 mcal lipid/oocyte when kept on water, but 2.8 meal protein and 4.3 mcal lipid/oocyte with intermittent sugar meals, thus marking a surprising flexibility in synthesis of yolk protein and lipid that strongly depends on additional carbohydrates sources. Only 80% of water-fed An. atroparvus re-fed 2 d after a first blood meal with small females taking three blood meals but they still showed reduced fecundity. Only the large water-fed females matured eggs, with blood volumes higher than 9-12 microl. When fed sugar, the blood meal input was reduced, but oogenesis was possible, whereas water-fed females required three blood meals to reach the caloric level comparable to pre-feeding sugar-fed females. Water-fedAn. gambiae could survive on daily blood meals alone, but survival was further extended by intermittent sugar meals. When offered a blood donor daily, there was a behavioral difference. Females maintained alone showed a more or less regular 3 d feeding and oviposition activity, while females kept in groups fed daily followed a daily oviposition pattern, suggesting gonotrophic discordance.  相似文献   

3.
The effect of sugar feeding on egg-batch size in Aedes aegypti was examined in a way that would distinguish between the roles of a recent sugar meal (full vs. empty crop) and of repeated sugar feeding and digestion (high vs. low energy reserves). Egg numbers of females representing the four combinations of these characteristics (full crop/high reserves, full crop/low reserves, empty crop/high reserves, empty crop/low reserves) were counted during their first gonotrophic cycle. In addition, the sizes of their replete sugar meals and human blood meals were measured to understand the interactions between them. Results demonstrated that blood-fed mosquitoes with full crops and low energy reserves produced the fewest eggs (mean = 56.2); those with empty crops and high energy reserves produced the most eggs (mean = 84.6); and those with the opposite combinations (full/high and empty/ low) had an intermediate fecundity (mean = 75.2 and 76.9, respectively). This ranking of fecundities did not correspond to blood-meal size ranks, owing to direct and indirect effects of energy reserves on meal sizes and egg number. Full-crop females with low reserves ingested the smallest blood meals (mean = 0.62 mg) and had the lowest fecundities. Full-crop females with high reserves ingested more blood (mean = 0.82 mg) and produced more eggs. But empty-crop females with low reserves ingested the largest blood meals (mean = 1.19 mg), yet produced significantly fewer eggs than their high-reserve counterparts, which took smaller blood meals (mean = 0.99 mg). These results demonstrate extremes in the reproductive penalty of crop sugar and the reproductive reward of digested sugar. Energy reserves and an empty crop are similarly valuable in promoting fecundity at the time blood is taken.  相似文献   

4.
Phlebotomus papatasi females were fed through membranes or from cotton wool soaked in blood, water, sucrose or sodium chloride solutions. In membrane-fed flies, all diets were routed to the midgut and not to the crop. Following the meals that went to the midgut, females showed ovarian development at least 3 times greater than in sucrose-fed, autogenous control flies. Neither small quantities of water arriving in the midgut following drinking from soaked cotton wool, nor piercing of a membrane without feeding, stimulated ovarian development. Flies exhibited different feeding behaviour namely, blood feeding, sugar feeding, and water drinking. The blood-feeding behaviour was typical of flies ingesting any of the experimental diets through membranes, or blood or saline from cotton wool. The other two types of behaviour were observed in flies which fed from soaked cotton wool. The type of behaviour was characterized by the depth of penetration of the mouthparts into the substrate, the deployment of the palps and the degree of contact between the palps and the surface. It is suggested that the stimuli which control the routing of meals to the crop or to the midgut are derived from these types of behaviour.  相似文献   

5.
Female Anopheles freeborni begin to defaecate the haem containing residue of a blood meal about the time their ova mature, 40–45 hr after feeding. Ovariectomized females begin to defaecate 15 hr prematurely, while ovariectomized females treated with 20-hydroxyecdysone retain blood meals longer, proportional to dose, than do those untreated. It is concluded that the production of ecdysteroids by the ovary initiates a mechanism for retention of the blood meal in the mosquito.  相似文献   

6.
Chagas disease is one of the most important vector-borne diseases in Latin America, including Mexico. Triatoma pallidipennis (Stål) (Hemiptera: Reduviidae) is a Mexican triatomine vector commonly associated with different hosts. The influence of six blood meals (rabbits, rats, mice, dogs, cats and chickens) on six biological parameters of the biology of T. pallidipennis was evaluated. A significant difference was found in the period of egg-to-adult development between the five mammalian feeds (mean 195 days) and the chicken feed (221 days). The probability of survival was significantly lower in the chicken cohort (0.285). The total number of blood meals to moult from the first instar to the adult stage was the highest in the chicken cohort (10–15). This cohort had the significantly highest rate of females at the end cycle. The mean number of eggs laid per female and the egg eclosion rate were similar among the six food sources. Most results seemed to be influenced by the higher nutritional quality of the mammalian blood compared to the bird's blood and the increased energy expenditure required for the digestion of bird blood. These results clearly show that T. pallidipennis, unlike other triatomine species, has a high reproductive capacity when feeding on different hosts.  相似文献   

7.
The entomopathogenic fungus Metarhizium anisopliae is being considered as a biocontrol agent against adult African malaria vectors. In addition to causing significant mortality, this pathogen is known to cause reductions in feeding and fecundity in a range of insects. In the present study we investigated whether infection with M. anisopliae affected blood feeding and fecundity of adult female malaria vectors Anopheles gambiae Giles sensu stricto. Mosquitoes were contaminated with either a low or a moderately high dose of oil-formulated conidia of M. anisopliae, and offered a single human blood meal 48, 72, or 96 h later to assess feeding propensity and individual blood meal size. In a second experiment, individual fungus-infected females were offered a blood meal every third day (to a total of 8 gonotrophic cycles), and allowed to oviposit after each cycle in order to quantify feeding propensity and fecundity. Infected females took smaller blood meals and displayed reduced feeding propensity. It was found that mosquitoes, inoculated with a moderately high dose of fungal conidia, exhibited reduced appetite related to increasing fungal growth. Of the fungus-infected females, the proportion of mosquitoes taking the second blood meal was reduced with 51%. This was further reduced to 35.3% by the 4th blood meal. During 8 feeding opportunities, the average number of blood meals taken by uninfected females was 4.39, against 3.40 (low dose), and 2.07 (high dose) blood meals for the fungus-infected females. Moreover, infected females produced fewer eggs per gonotrophic cycle and had a lower life-time fecundity. Epidemiological models show that both blood feeding and fecundity are among the most important factors affecting the likelihood of a mosquito transmitting malaria, which suggests that this fungus may have potential as biocontrol agent for vector-borne disease control.  相似文献   

8.
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.  相似文献   

9.
Snakes can ingest large meals and exhibit marked increases in metabolic rate during digestion. Because postprandial oxygen consumption in some snakes may surpass that attained during exercise, studies of digestion offers an alternative avenue to understand the cardio-respiratory responses to elevated metabolic rate in reptiles. The effects of feeding on metabolic rate, arterial oxygen levels, and arterial acid-base status in the snake Python molorus are described. Four snakes (180-250 g) were cannulated in the dorsal aorta and blood samples were obtained during 72 h following ingestion of a meal (rat pups) exceeding 20% of body weight. Oxygen consumption increased from a fasting value of 1.71 +/- 0.08 to 5.54 +/- 0.42 ml kg-1 min-1 at 48 h following feeding, and the respiratory gas exchange ratio increased from 0.67 +/- 0.02 to a maximum of 0.92 +/- 0.03 at 32 h. Plasma lactate was always less than 0.5 mM, so the postprandial increase in metabolic rate was met by aerobic respiration. In fasting animals, arterial PO2 was 66 +/- 4 mmHg and haemoglobin-O2 saturation was 92 +/- 3%; similar values were recorded during digestion, but haematocrit decreased from 15.8 +/- 1.0 to 9.8 +/- 0.8 due to repeated blood sampling. Plasma [HCO3-] increased from a fasting level of 19.3 +/- 0.8 to 25.8 +/- 1.0 mmol l-1 at 24 h after feeding. However, because arterial PCO2 increased from 21.1 +/- 0.5 to 27.9 +/- 1.4 mmHg, there was no significant change in arterial pH from the fasting value of 7.52 +/- 0.01. Acid-base status returned to pre-feeding levels at 72 h following feeding. The increased arterial PCO2 is most likely explained by a reduction in ventilation relative to metabolism, but we predict that lung PO2 does not decrease below 115 mmHg. Although ingestion of large meals is associated with large metabolic changes in pythons, the attendant changes in blood gases are relatively small. In particular, the small changes in plasma [HCO3-] and stable pH show that pythons respond very differently to digestion than alligators where very large alkaline tides have been observed. It is unclear why pythons and alligators differ in the magnitude of their responses, but given these interspecific differences it seems worthwhile to describe arterial blood gases during digestion in other species of ectothermic vertebrates.  相似文献   

10.
11.
For five species of hummingbirds in the laboratory, time between meals was related to energy intake on the first meal and rate of energy expenditure between meals. Field observations gave similar results. Average meal sizes were similar at one intake rate independent of food caloric density; females averaged longer bouts than males. When rate of intake was approximately halved, meal duration approximately doubled and volume intake remained similar. We postulate that feeding is initiated when crop contents reach a lower threshold and that feeding is terminated after ingestion of an optimal volume determined by the added weight of the meal.  相似文献   

12.
Relative to their pre-engorgement weights, nulliparous Anopheles nuneztovari consumed significantly smaller blood meals than A. marajoara, A. triannulatus or A. aquasalis. When females were deprived of sugar before blood feeding, only one-quarter of A. nuneztovari, but more than two-thirds of A. marajoara, A. triannulatus and A. aquasalis matured eggs. Sugar feeding before blood, or two successive blood meals by sugar-deprived females, increased the proportion of nulliparous A. nuneztovari which developed eggs, but not significantly so. Nearly all individuals of nulliparous, sugar-fed A. marajoara, A. triannulatus and A. aquasalis matured eggs after one blood feeding. Among A. nuneztovari, A. marajoara and A. aquasalis that matured some eggs in the laboratory, there were no positive correlations between the number of eggs developed and relative blood meal size. However, blood meals larger than the mean size significantly increased the chance that A. nuneztovari would develop some eggs. Mean fecundities of gravid A. nuneztovari and A. marajoara reared in the laboratory were significantly lower than those of the same species captured at human bait in nature. Post-engorgement access to sugar by A. nuneztovari (captured at human bait) did not influence fecundity, but significantly enhanced survivorship and the proportion of individuals which retained eggs. Release-recapture experiments revealed that relatively small blood meals are typical of A. nuneztovari only during the first gonotrophic cycle. We suggest that multiple blood feeding, seemingly necessary for most A. nuneztovari to develop a first clutch of eggs, may increase the probability of infection with Plasmodium vivax where this mosquito species is a primary vector.  相似文献   

13.
In many fish and reptiles, gastric digestion is responsible for the complete breakdown of prey items into semi-liquid chyme. The responses of the stomach to feeding and to periods of fasting are, however, unknown for many lower vertebrates. We inserted data loggers into the stomachs of free-swimming captive adult blacktip reef sharks (Carcharhinus melanopterus) to quantify gastric pH, motility and temperature during fasting and following ingestion of food. Gastric acid secretion was continuous, even during long periods of fasting, with a mean pH of 1.66 ± 0.40 (± 1 SD) when the stomach was empty. Stomach contractions were greater following meals of mackerel than for those of squid. Gastric motility following feeding on mackerel, was positively influenced by ambient temperature, and followed a quadratic relationship with meal size, with maximum motility occurring after meals of 0.8-1.0% body weight. Diel changes in gastric motility were apparent, and were most likely caused by diel changes in ambient temperature. Gastric digestion in blacktip reef sharks is affected by both biotic and abiotic variables. We hypothesize that behavioral strategies adopted by sharks in the field may be an attempt to optimize digestion by selecting for appropriate environmental conditions.  相似文献   

14.
15.
Feed intake behavior was studied between 9 weeks of age and slaughter in a total of 36 gilts, 32 immunocastrates, 33 surgically castrated barrows and 33 boars from 36 litters. Consequences for the concentration of substances contributing to off odor of pork (skatole, indole) were evaluated. Animals were kept in groups of 12 pigs of the same sex and treatment and fed ad libitum (13.4 MJ ME, 17% CP, 1.1% lysine). Individual feed intake behavior was recorded continuously by an electronic feeder. Immunocastration was carried out with two injections of Improvac with at least 4 weeks between both injections (1st: 12 to 17 weeks of age, 2nd: 19 to 21 weeks of age). Feed intake/day increased from an average of 0.91 ± 0.02 kg/day up to 3.15 ± 0.04 kg/day before slaughter. This increase was associated with a 50% reduction in the number of meals/day (from 15.8 ± 0.44 to 7.2 ± 0.29 meals/day). The larger meal sizes resulted from an increase in both, the duration of feed intake/meal and the feed intake rate (g/min). In addition, sex and treatment differences were observed: Feed intake in boars was lower than in all other groups due to a reduction in the number of meals/day and in the time spent feeding/day. In females, time spent feeding/day was quite similar to boars, but resulted from a higher number of meals of shorter duration. Barrows had a significantly higher feed intake because of a higher number of meals/day resulting in more time spent feeding/day. The feed intake rate was similar in boars, gilts and barrows and showed an increasing trend during the study, starting from about 15 g/min up to four times the amount. Immunocastration affected feed intake behavior severely, especially the meal size increased dramatically because of higher feed intake rate, which exceeded that of all other groups by 25% at the end of the study. The number of meals/day was not influenced by immunocastration and was almost identical to that of boars. Highest skatole concentrations were measured in fat of boars, whereas indole concentrations were higher in immunocastrates than in all other groups. In gilts and barrows, skatole concentrations were related to growth rate. Additionally, the feeding rate was an important factor explaining the variability in skatole/indole concentrations in adipose tissue. The physiological mechanisms however need further clarification.  相似文献   

16.
BackgroundAedes aegypti mosquitoes are globally distributed vectors of viruses that impact the health of hundreds of millions of people annually. Mating and blood feeding represent fundamental aspects of mosquito life history that carry important implications for vectorial capacity and for control strategies. Females transmit pathogens to vertebrate hosts and obtain essential nutrients for eggs during blood feeding. Further, because host-seeking Ae. aegypti females mate with males swarming near hosts, biological crosstalk between these behaviors could be important. Although mating influences nutritional intake in other insects, prior studies examining mating effects on mosquito blood feeding have yielded conflicting results.Methodology/Principal findingsTo resolve these discrepancies, we examined blood-feeding physiology and behavior in virgin and mated females and in virgins injected with male accessory gland extracts (MAG), which induce post-mating changes in female behavior. We controlled adult nutritional status prior to blood feeding by using water- and sugar-fed controls. Our data show that neither mating nor injection with MAG affect Ae. aegypti blood intake, digestion, or feeding avidity for an initial blood meal. However, sugar feeding, a common supplement in laboratory settings but relatively rare in nature, significantly affected all aspects of feeding and may have contributed to conflicting results among previous studies. Further, mating, MAG injection, and sugar intake induced declines in subsequent feedings after an initial blood meal, correlating with egg production and laying. Taking our evaluation to the field, virgin and mated mosquitoes collected in Colombia were equally likely to contain blood at the time of collection.Conclusions/SignificanceMating, MAG, and sugar feeding impact a mosquito’s estimated ability to transmit pathogens through both direct and indirect effects on multiple aspects of mosquito biology. Our results highlight the need to consider natural mosquito ecology, including diet, when assessing their physiology and behavior in the laboratory.  相似文献   

17.
Changes associated with feeding in the histological and cytological structure of the digestive gland of the loliginid squid Sepioteuthis lessoniana were examined, along with the nature of both the intracellular and extracellular enzymes produced by the gland. The timing of the release of the extracellular enzymes during the digestive cycle was also determined using a quantitative experimental program. Like that of all coleoid cephalopods, the digestive gland was characterised by one type of cell with several functional stages. As is the case for other loliginid squids, however, the digestive cells did not contain the large enzyme-carrying boules that characterise the digestive glands of most cephalopods. Instead, smaller secretory granules were found in the digestive cells and these may be the enzyme carriers. The prominent rough endoplasmic reticulum, large mitochondria and active Golgi complexes present in the digestive cells are characteristic of cephalopods and indicate a high metabolic activity. Like that of other cephalopods, endocytotic absorption of nutrients and intracellular digestion occurs in the digestive gland of this squid. From quantitative and qualitative examinations of structural changes in the digestive gland of S. lessoniana after feeding, a schedule of its function during the course of digestion was proposed. This indicated that digestion was very rapid, being completed in as little as 4 h in S. lessoniana. Extracellular digestive enzymes were only released after the first hour following feeding, which implies that they are stored in the stomach between meals to increase digestive efficiency.  相似文献   

18.
Hematophagous insects transmit many of the most dangerous parasitic diseases. The transmission usually occurs during hematophagy or just after as this is when the vector and the host are in contact. The contact time is determined by the feeding performance of the insect in each host. In triatomines, feeding performance interferes with both their life cycle and the vectorial competence to transmit the hemoflagellate Trypanosoma cruzi. Triatomine bugs are vessel feeders, obtaining their blood meals directly from the vessels (venules or arterioles) of their vertebrate hosts. The host blood intake rate is not constant during the feeding, and the sucking frequency of triatomines tends to be higher and to contain fewer interruptions in pigeons than in mice. To identify the difficulties encountered by triatomine bugs in obtaining blood meals from mouse skin, we used intravital microscopy techniques associated with electromyograms of the cibarial pump. To monitor the vibration of the cannulated vessels and the blood flow through the head of the insect during the engorgement phase, we introduced a novel method for image analysis. The mean number of vessels used during a Rhodnius prolixus blood meal was 3.4 ± 1.2, and the insects fed more in venules (63%) than in arterioles (37%). An important increase in vascular permeability was observed throughout the feeding. Platelet aggregation, rolling and leukocyte adherence were analyzed on the venular endothelium, showing remarkable increases for some time following the R. prolixus feeding. The reduction in sucking frequency that was observed during insect feeding was likely due to the increased cibarial pump filling time. The monitoring of the vessel wall pulsation also permitted the registration of regurgitation-like movements during blood pumping, with these movements being recorded mostly during the second half of the feeding. The evaluation of blood flow through the head of the insect suggested that the regurgitation-like movements were not true regurgitations and were caused by abrupt difficulties in the function of the cibarial pump. The role of the platelet plugs and the changes in blood viscosity at the R. prolixus feeding site are discussed. The method introduced in the present study to analyze the images brings new insights into the interaction between hematophagous vectors and their hosts, reinforcing the importance of insect saliva throughout the feeding process.  相似文献   

19.
There is a relationship between the normal progress of digestion and the retention or elimination of the proteins ingested with the meal by Aedes aegyti females. The addition of soybean trypsin inhibitor (STI) to a protein meal prevented digestion and resulted in a rapid elimination of the undigested proteins. The addition of a mix of free amino acids to a protein meal together with STI resulted in a significant increase in the retention of the undigested proteins during the first 10-15 hrs after feeding. The effect of the free amino acids on the retention of the proteins was concentration-dependent between 250 microg/ml and 5 mg/ml. Free amino acids were also important for the retention of non-protein meals. When females were fed a meal containing FITC-dextran (20 kD), most of this compound was eliminated into the feces by 10 hrs; the addition of free amino acid resulted in a significant increase in the retention of the FITC-dextran by the midgut during the first 15 hrs after feeding. The presence of free amino acids in the midgut lumen seems to be an important signal used by the mosquito to regulate the retention of the meal.  相似文献   

20.
Abstract. Three models for feeding in female tsetse are considered. Model I: there is a prolonged non-feeding phase after each meal followed by feeding at a constant rate, with a constant probability of dying as a consequence of feeding. Model II: the feeding rate increases linearly after each meal. Model III: the feeding rate increases exponentially after each meal. In Models II and III the feeding hazard is a linear function of the probability of feeding. Production of viable female offspring is estimated under each model, making allowance for losses of adults due to starvation and to background and feeding mortality, losses of pupae due to predation and parasitization, and losses of young flies if their mothers take insufficient blood during pregnancy. Under Model I, if females require three meals to produce viable pupae in 9 days, then for a non-decreasing population with a background mortality of 1%/day, and 25% pupal losses due to predation and parasitism, the feeding risk must be ≤5%/feed. At this maximum level the non-feeding phase should be 2–2.5 days for optimal productivity, with a mean feeding interval of 60–72 h. If the background mortality is 2%/day, feeding losses cannot exceed 1%/feed for a non-decreasing population. If four or five meals are required for the production of fully viable pupae, the optimal values of the non-feeding phase and mean feeding interval tend towards 1 and 2 days respectively. Under Models II and HI the mean feeding interval is 50–60 h for optimal productivity (with variances 3 times as large as for Model I), in good agreement with estimates from recent models for feeding and digestion. Field evidence suggests that feeding tsetse take greater risks as their fat levels dwindle. This should result in feeding (and feeding mortality) rates which increase during the feeding phase - as assumed in Models II and III but not in Model I. These models allow greater flexibility than Model I, because flies can feed early in the hunger cycle, at low probability, as long as the feeding risk is also low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号