首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wieczorek DJ  Didion L  Feiss M 《Genetics》2002,161(1):21-31
The cosQ site of bacteriophage lambda is required for DNA packaging termination. Previous studies have shown that cosQ mutations can be suppressed in three ways: by a local suppressor within cosQ, an increase in the length of the lambda chromosome, and missense mutations affecting the prohead's portal protein, gpB. In the present work, revertants of a set of lethal cosQ mutants were screened for suppressors. Seven new cosQ suppressors affected gene B, which encodes the portal protein of the prohead. All seven were allele-nonspecific suppressors of cosQ mutations. Experiments with several phages having two cosQ suppressors showed that the suppression effects were additive. Furthermore, these double suppressors had minimal effects on the growth of cosQ(+) phages. These trans-acting suppressors affecting the portal protein are proposed to allow the mutant cosQ site to be more efficiently recognized, due to the slowing of the rate of translocation.  相似文献   

2.
Bacteriophage lambda chromosomes are processively packaged into preformed shells, using end-to-end multimers of intracellular viral DNA as the packaging substate. A 200 bp long DNA segment, cos, contains all the sequences needed for DNA packaging. The work reported here shows that efficient DNA packaging termination requires cos's I2 segment, in addition to the required termination subsite, cosQ, and the nicking site, cosN. Efficient processivity requires cosB, in addition to cosQ and cosN. An initiation-defective mutant form of cosB sponsored efficient processivity, indicating that the terminase-cosB interactions required for termination are less stringent than those required at initiation. The finding that an initiation-defective form of cosB is functional for processivity allows a re-interpretation of a similar finding, obtained previously, that the initiation-defective cosB of phage 21 is functional for processivity by the lambda packaging machinery. The cosBphi21 result can now be interpreted as indicating that interactions between cosBphi21 and lambda terminase, while insufficient for initiation, function for processivity.  相似文献   

3.
From previous data on the first round of bacteriophage λcIIcIII DNA replication (Schnös & Inman, 1970) it is possible to estimate, by extrapolation, the position on circular λ DNA where bidirectional growing points meet. In the present study we have investigated whether this position occurs at a genetically defined site. To this end, replicative intermediates of λ mutants containing either deletions to the left of the replication origin, or one deletion plus a duplication to the right, were analyzed in the electron microscope. Our results indicate that: (i) leftward growing points can traverse the extrapolated termination point calculated from the λcIIcIII data, (ii) no discontinuity of either right or leftward growing fork position is observed, and (iii) the extrapolated termination points for these mutants are well removed from those calculated for λcIIcIII DNA. From these data we conclude that there is probably no unique termination site for the first round of λ DNA replication and that termination occurs simply by collision of the growing forks.  相似文献   

4.
Wieczorek DJ  Feiss M 《Genetics》2003,165(1):11-21
The cos site of the bacteriophage lambda chromosome contains the sites required for DNA processing and packaging during virion assembly. cos is composed of three subsites, cosQ, cosN, and cosB. cosQ is required for the termination of chromosome packaging. Previous studies have shown cosQ mutations to be suppressed in three ways: by a local suppressor within cosQ; by an increase in the length of the lambda chromosome; and by missense mutations affecting the prohead's portal protein, gpB. In the first study reported here, revertants of a set of cosQ mutants were screened for suppressors, and cis-acting suppressors of cosQ mutations were studied; these included second-site cosQ point mutations, base-pair insertions within cosQ, and an additional genome-lengthening suppressor. The 7-bp-long cosQ, with the sequence 5'-GGGTCCT-3', coincides exactly with the recognition site for the EcoO109I restriction/methylation system, which has the consensus sequence 5'-PuGGNCCPy-3'. In a second study, EcoO109I methylation was found to strongly interfere with the residual cosQ function of leaky cosQ mutants. cis-acting suppressors that overcome methylation-associated defects, including a methylation-dependent suppressor, were also isolated. Models of cosQ suppression are presented.  相似文献   

5.
cosB, the binding site for terminase, the DNA packaging enzyme of bacteriophage lambda, consists of three binding sites (called R3, R2 and R1) for gpNu1, the small subunit of terminase; and I1, a binding site for integration host factor (IHF), the DNA bending protein of Escherichia coli. cosB is located between cosN, the site where terminase introduces staggered nicks to generate cohesive ends, and the Nu1 gene; the order of sites is: cosN-R3-I1-R2-R1-Nu1. A series of lambda mutants have been constructed that have single base-pair C-to-T transition mutations in R3, R2 and R1. A single base-pair transition mutation within any one of the gpNul binding sites renders lambda dependent upon IHF for plaque formation. lambda phage with mutations in both R2 and R3 are incapable of plaque formation even in the presence of IHF. Phages that carry DNA insertions between R1 and R2, from 7 to 20 base-pairs long, are also IHF-dependent, demonstrating the requirement for a precise spacing of gpNu1 binding sites within cosB. The IHF-dependent phenotype of a lambda mutant carrying a deletion of the R1 sequence indicates that IHF obviates the need for terminase binding to the R1 site. In contrast, a lambda mutant deleted for R2 and R1 fails to form plaques on either IHF+ or IHF- cells, indicating terminase binding of R2 is involved in suppression of R mutants by IHF. A fourth R sequence, R4, is situated on the left side of cosN; a phage with a mutant R4 sequence shows a reduced burst size on both an IHF+ and an IHF- host. The inability of the R4- mutant to be suppressed by IHF, plus the fact that R4 does not bind gpNu1, suggests R4 is not part of cosB and may play a role in DNA packaging that is distinct from that of cosB.  相似文献   

6.
7.
Petit λ is an empty spherical shell of protein which appears wherever λ grows. If phage DNA and petit λ are added to a cell-free extract of induced lysogenic bacteria, then phage particles are formed that contain the DNA and protein from the petit λ. Petit λ is transformed, without dissociation, into a phage head by addition of DNA and more phage proteins.The products of ten genes, nine phage and one host, are required for λ head assembly. Among these, the products of four phage genes, E, B, C, and Nu3 and of the host gene groE are involved in the synthesis of petit λ, consequently these proteins are dispensable for head assembly in extracts to which petit λ has been added. The products of genes A and D allow DNA to combine with petit λ to form a head that has normal morphology. In an extract, DNA can react with A product and petit λ to become partially DNAase-resistant, as if an unstable DNA-filled intermediate were formed. ATP and spermidine are needed at this stage. This intermediate is subsequently stabilized by addition of D product. The data suggest a pathway for head assembly.  相似文献   

8.
9.
During the assembly of bacteriophage λ heads, a head-like, DNA-free structure called petite λ, is first constructed. Into this, λ DNA is then packaged. In this paper we examine early interactions between λ DNA and petite λ in a cell-free system. The two major findings of this paper are: (1) when seen through the electron microscope, an early petite λ-λ DNA complex appears with the circular petite λ having the DNA crossing through its center. These resemble a bead on a string or the Greek letter φ (hence they are called φ structures). The λ A protein is required in the formation of φ structures. Also, φ structures can be found in bacteria infected with phage λ. (2) The polyamine putrescine is required for phage head assembly. An earlier reported requirement for spermidine can be replaced by the addition of putrescine. Polyamine is required in the DNA packaging reaction after the packaging has begun.  相似文献   

10.
J Q Hang  C E Catalano  M Feiss 《Biochemistry》2001,40(44):13370-13377
cosN is the site at which terminase, the DNA packaging enzyme of phage lambda, introduces staggered nicks into viral concatemeric DNA to initiate genome packaging. Although the nick positions and many of the base pairs of cosN show 2-fold rotational symmetry, cosN is functionally asymmetric. That is, the cosN G2C mutation in the left half-site (cosNL) causes a strong virus growth defect whereas the symmetrically disposed cosN C11G mutation in the right half-site (cosNR) does not affect virus growth. The experiments reported here test the proposal that the genetic asymmetry of cosN results from terminase interactions with cosB, a binding site to the right of cosN. In the presence of cosB, the left half-site mutation, cosN G2C, strongly affected the cos cleavage reaction, while the symmetric right half-site mutation, cosN C11G, had little effect. In the absence of cosB, the two mutations moderately reduced the rate of cos cleavage by the same amount. The results indicated that the functional asymmetry of cosNdepends on the presence of cosB. A model is discussed in which terminase-cosN interactions in the nicking complex are assisted by anchoring of terminase to cosB.  相似文献   

11.
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.  相似文献   

12.
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.  相似文献   

13.
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.  相似文献   

14.
Polarized packaging of bacteriophage lambda chromosomes.   总被引:3,自引:0,他引:3  
Packaging of chromosomes during lytic growth of cohesive end-site (cos site) duplication strains of phage lambda is strikingly asymmetric; the duplication segment is generally at the left chromosome end (Emmons, 1974). In the present study, the packaging of non-replicating cos duplication chromosomes is shown to be similarly asymmetric. It is, therefore, likely that the packaging process itself is polarized, in an A to R direction. This conclusion is based on the study of packaging of repressed prophage chromosomes of dilysogenic strains of Escherichia coli by a heteroimmune helper. In these strains one of the two prophages contains a cos duplication (see Fig. 2). The frequency with which helper-packaged chromosomes carry the cos duplication segment agrees well with expectations derived from lytically grown phage.Haploid segregants are produced from the cos duplication strain at a lower level (35%) during lytic growth than during packaging of repressed prophage chromosomes (50%). This is expected if chromosomes are packaged processively (in sequence) during lytic growth.Packaging of repressed cos triplication chromosomes by a heteroimmune helper also yields a distribution of haploid and duplication chromosomes that agrees with expectations from lytically grown cos duplication phage and the assumption that the initial cutting of a cos site to initiate a packaging sequence is made at random.Polarized, processive packaging and random initial cutting are elements of a model of lambda chromosome packaging proposed by Emmons (1974), for which our experiments provide support.  相似文献   

15.
We have studied the excision reaction of bacteriophage lambda, both in vivo and in vitro, using as a substrate a λatt2(L × R) phage carrying both the right and left-hand prophage attachment sites. Int and Xis are provided by induction of the heat-inducible defective prophage, λc1857 ΔH1. After a brief induction (5 min) of these cells, excisive recombination is blocked in the presence of the DNA gyrase inhibitor, coumermycin. However, after a longer induction (greater than 30 min) excisive recombination occurs efficiently under conditions where λ integrative recombination is inhibited by coumermycin. In such extensively induced coumermycin-treated cells, infecting λatt2(L × R) DNA is not supercoiled, and recombinants are found among the relaxed covalently closed circular DNA.In vitro, starting with a hydrogen-bonded λatt2 DNA substrate, excision is insensitive to high concentrations of coumermycin and novobiocin. To study the DNA substrate requirements for excisive recombination in more detail, we have developed a restriction fragment assay for excisive recombination. With this assay, we demonstrate that supercoiled, hydrogen-bonded, and linear λatt2 DNA molecules are all efficient substrates in the in vitro excision reaction. Spermidine is required but ATP and Mg2+ are not. We conclude that supercoiling is not an absolute requirement for site-specific recombination of λ.  相似文献   

16.
Terminase, the DNA packaging enzyme of phage lambda, binds to lambda DNA at a site called cosB, and introduces staggered nicks at an adjacent site, cosN, to generate the cohesive ends of virion lambda DNA molecules. Terminase also is involved in separation of the cohesive ends and in binding the prohead, the empty protein shell into which lambda DNA is packaged. Terminase is a DNA-dependent ATPase, and both subunits, gpNu1 and gpA, have ATPase activity. cosB contains a series of gpNu1 binding sites, R3, R2 and R1; between R3 and R2 is a binding site, I1, for integration host factor (IHF), the Escherichia coli DNA bending protein. In this work, a series of mutations in Nu1 have been isolated as suppressors of cosB mutations. One of the Nu1 mutations is identical to the previously described Nu1ms1/ohm1 mutation predicted to cause the change L40F in the 181 amino acid-long gpNu1. Three other Nu1 missense mutations, the Nu1ms2 (L40I), ms3 (Q97K) and ms4 (A92G) mutations, have been isolated; the relative strengths of suppression of cosB mutations by the Nu1ms mutations are: ms1 > ms2 > ms3 > ms4. The Nu1 missense mutations all affect amino acid residues that lie outside of the putative helix-turn-helix DNA binding motif of gpNu1. The Nu1ms1 and Nu1ms2 mutations alter an amino acid residue (L40) that lies directly between two segments of gpNu1 proposed to be involved in ATP binding and hydrolysis; thus these mutations are likely to alter the gpNu1 ATP-binding site. The Nu1ms3 and Nu1ms4 mutations both affect amino acid residues in the central region of gpNu1 that is predicted to form a hydrophilic alpha-helix. To explain how the Nu1ms mutations suppress cosB defects, models involving alterations of the DNA binding and/or catalytic properties of terminase are considered. The results also indicate that terminase occupancy of a single gpNu1 binding site (R3) is necessary and sufficient for the efficient initiation of DNA packaging; the Nu1ms1, ms2 and ms3 mutations permit IHF-independent plaque formation by a phage lacking R2 and R1.  相似文献   

17.
Bending and supercoiling of DNA at the attachment site of bacteriophage lambda   总被引:22,自引:0,他引:22  
Integration of the DNA of bacteriophage lambda into the chromosome of E. coli depends on the formation of a complex nucleoprotein array at a specific locus on the phage genome, the attachment site. Recent work shows how bending of this DNA (induced by a specific DNA-binding protein), and strain in this DNA (induced by supercoiling) contribute to the formation of the nucleoprotein structure. Further, there are new insights into the way this structure directs critical events during recombination.  相似文献   

18.
A nucleotide sequence of 61 nucleotides at the left end and 117 nucleotides at the right end of DNA from bacteriophage lambdacI857Sam7 was determined by the Maxam and Gilbert method. A perfect inverted repeat sequence of 10 nucleotides is near the left end, and one of 15 nucleotides is near the right end. DNA from another closely related lambda strain, lambdacI857prm116Sam7, has about 10% divergence in the sequence of the first 110 nucleotides at the right end and has a 17-member perfect inverted repeat sequence.  相似文献   

19.
Excision of the lambda prophage from the chromosome of its Escherichia coli host requires the products of the two viral genes int and xis. This paper reports a purification of the lambda xis gene product using a complementation assay in which functional Xis must be added to purified Int and an E. coli-derived host factor extract. Excisive recombination between a left (attL) and right (attR) prophage attachment site cloned on the same plasmid DNA substrate occurred efficiently under these conditions. Purified Int and Xis together could not carry out excision in vitro unless an extract derived from the E. coli host was added; purified integration host factor satisfied this requirement. Xis appears to have a molecular weight of 8800 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. It possesses no detectable endonuclease or topoisomerase activities, does not appear to bind DNA to filters, and does not increase the ability of Int to bind DNA. The addition of Xis not only stimulated excisive recombination in vitro but also inhibited integrative recombination. Xis protected Int protein from heat inactivation, suggesting a possible interaction between the two proteins. In light of these observations, possible roles for Xis in recombination are discussed.  相似文献   

20.
Cryo-electron microscopy (cryo-EM) studies of the bacteriophage phi29 DNA packaging motor have delineated the relative positions and molecular boundaries of the 12-fold symmetric head-tail connector, the 5-fold symmetric prohead RNA (pRNA), the ATPase that provides the energy for packaging, and the procapsid. Reconstructions, assuming 5-fold symmetry, were determined for proheads with 174-base, 120-base, and 71-base pRNA; proheads lacking pRNA; proheads with ATPase bound; and proheads in which the packaging motor was missing the connector. These structures are consistent with pRNA and ATPase forming a pentameric motor component around the unique vertex of proheads. They suggest an assembly pathway for the packaging motor and a mechanism for DNA translocation into empty proheads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号