首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of chlorophyllase, contents of pigments including chlorophyll a and b, chlorophyllide a and b, and phaeophorbide a during leaf senescence under low oxygen (0.5% O2) and control (air) were investigated in a non-yellowing mutant and wild-type leaves of snap beans (Phaseolus vulgaris L.). Chlorophyllase from leaf tissues had maximum activity when incubated at 40C in a mixture containing 50% acetone. In both mutant and wild type, chlorophyllase activity was the highest in freshly harvested non-senescent leaves and decreased sharply in the course of senescence, indicating that the loss of chlorophylls in senescing leaves is not directly related to the activity of chlorophyllase and that chlorophyllase activity is not altered in the mutant. The wild type had higher ratios of chlorophyll a to chlorophyll b than the mutant and chlorophyll a : b ratios increased during senescence in both types. In the senescent mutant leaves, accumulations of chlorophyllide a and chlorophyllide b were detected, but no phaeophorbide a was found. Chlorophyllide b had a greater accumulation than chlorophyllide a in the early stage of senescence. Low oxygen treatment not only delayed chlorophyll degradation but also enhanced the accumulations of chlorophyllide a and b and lowered the ratios of chlorophyll a to chlorophyll b.  相似文献   

2.
A large decrease was observed in the chlorophyll content ofthe primary leaves of Phaseolus vulgaris during senescence.Chloroplasts isolated from mature and senescent leaves gavevery similar light saturation curves for electron transportreactions involving either PS I or PS II, indicating that theaverage number of chlorophyll molecules associated with eachreaction centre did not change during senescence. It is concludedthat the reaction centres ceased to function at the same timeas, or perhaps before, their antenna chlorophylls were lostfrom the thylakoid membrane, and that the percentage decreasein the number of functional reaction centres per leaf was atleast as great as the percentage decrease in the leaf chlorophyllcontent. The chlorophyll-protein composition of thylakoid membrane preparationswas examined by electrophoresis of samples treated with sodiumdodecyl sulphate. In older leaves a smaller proportion of thechlorophyll applied to polyacrylamide gels was associated withthe P700- chlorophyll a-protein complex. There was also a declinein emission at 734 nm in the 77 °K fluorescence spectrumof intact leaf tissue during senescence. These results indicatethat older leaves contained a smaller proportion of chlorophyllsassociated with PS I, and this is consistent with the decreaseobserved in the leaf chlorophyll a/b ratio during senescence.The effect of these changes in chlorophyll content on the capacityof the chloroplast to carry out photosynthetic electron transportis discussed.  相似文献   

3.
The senescence of leaves is characterized by yellowing as chlorophyll pigments are degraded. Proteins of the chloroplasts also decline during this phase of development. There exists a non-yellowing mutant genotype of Festuca pratensis Huds. which does not suffer a loss of chlorophyll during senescence. The fate of chloroplast membrane proteins was studied in mutant and wild-type plants by immune blotting and immuno-electron microscopy. Intrinsic proteins of photosystem II, exemplified by the light-harvesting chlorophyll a/b-binding protein (LHCP-2) and D1, were shown to be unusually stable in the mutant during senescence, whereas the extrinsic 33-kilodalton protein of the oxygen-evolving complex was equally lable in both genotypes. An ultrastructural study revealed that while the intrinsic proteins remained in the internal membranes of the chloroplasts, they ceased to display the heterogenous lateral distribution within the lamellae which was characteristic of nonsenescent chloroplasts. These observations are discussed in the light of possible mechanisms of protein turnover in chloroplasts.Abbreviations kDa kilodalton - LHCP-2 light-harvesting chlorophyll a/b-binding protein - Mr relative molecular mass - PSII photosystem II - SDS sodium dodecyl sulphate  相似文献   

4.
The activity of photosystems one and two (PS I and PS II) wasmeasured in chloroplasts isolated from the primary leaves ofPhaseolus vulgaris. During foliar senescence, the rates of electrontransport through PS I and PS II declined by approximately 25%and 33% respectively. These losses of activity could not accountfor the decrease of 80% in the rate of coupled, non-cyclic electrontransport during senescence. It is therefore suggested thatan impairment of electron flow between the photosystems limitednon-cyclic electron transport in chloroplasts from older leaves.In this study the activity of PS II was measured using oxidizedp-phenylenediamine as the electron acceptor, and trifluralinas an inhibitor of electron transport between PS II and PS I.In chloroplasts from young leaves the reduction of ferricyanidewas a measure of non-cyclic electron transport, but in preparationsfrom older leaves ferricyanide received a large proportion ofelectrons from PS II.  相似文献   

5.
The loss of pigments was assessed in detached leaves of Festuca pratensis Huds. kept in permanent darkness. Two genotypes, a normal yellowing cultivar Rossa and a non-yellowing mutant Bf 993 were compared with each other. Analysis of individual pigments, chlorophylls. β-carotene, lutein, violaxanthin and neoxanthin was performed using HPLC. In the non-yellowing genotype the high retention of chlorophylls was associated with an equally high retention of total carotenoids. Although the two genotypes differ markedly with regard to the rate of pigment loss, the ratios of yellow to green pigments did not change significantly during dark-induced senescence. At the end of the senescence period β-carotene was retained to a higher degree than the xanthophylls, particularly in the yellowing genotype. In the mutant leaves the ratio of chlorophyll a to b remained nearly constant, whereas in leaves of the normal genotype a preferential retention of chlorophyll b was observed towards the end of the senescence period. It is concluded that the thylakoids of the non-yellowing genotype retain all the principal components of protein-pigment complexes, i.e. chlorophylls, carotenoids and apoproteins. Possible explanations for the stability of these complexes in the mutant are discussed.  相似文献   

6.
In field trials of Phaseolus vulgaris large differences wereobserved between varieties in the rate at which the leaves abscised.Similar differences were found in the rate of decline of thechlorophyll content of excised leaf discs. A grafting experimentshowed that the differences in leaf abscission depended on thegenotype of the scion and on that of the rootstock. Scion andstock effects of each genotype were similar, and additive. Rootstock/scioncombinations which conferred enhanced leaf retention producedgreater yields of seed and of seed nitrogen. When shoots ofdelayed-senescence genotypes of P. vulgaris were held in waterthey produced more adventitious roots than did shoots of rapid-senescencegenotypes. This relationship between senescence pattern andadventitious rooting was also observed among varieties of Glycinemax, and between isogenic lines of G. max differing in the leafabscission alleles Ab/ab. These results are discussed in relationto current theories of leaf senescence, abscission, and theproduction of yield.  相似文献   

7.
A study was made of linolenic acid-dependent oxidative chlorophyll bleaching (CHLOX) by thylakoid membranes from senescing leaf tissue of a normal cultivar (cv. Rossa) and a non-yellowing mutant genotype (Bf 993) of Festuca pratensis Huds. To overcome the problem of variation in levels of endogenous chlorophyll substrate in membranes from different sources, light-harvesting complex (LHC) was used to supplement thylakoid pigment. It was shown that CHLOX is associated with both Photosystem I and LHC-rich thylakoid subfractions but that purified LHC has negligible associated CHLOX activity and stimulates the rate of bleaching by isolated entire chloroplast membranes. Non-senescent tissue of Bf 993 and Rossa had essentially identical thylakoid CHLOX levels, which subsequently declined during senescence in darkness. The half-life of CHLOX from the mutant was three times greater than that of the normal genotype. In both cultivars, the amount of CHLOX assayed in thylakoids isolated at different times during senescence was more than adequate to support the corresponding in-vivo rate of pigment degradation as calculated from the half-life for chlorophyll. It was concluded that the non-yellowing mutation is not expressed through a lack of CHLOX activity. The role of linolenic acid metabolism in the regulation of thylakoid structure and function during senescence, and as a likely site of the non-yellowing lesion, are discussed.Abbreviations CHLOX linolenic acid-dependent oxidative chlorophyll bleaching activity - CHLPX chlorophyll peroxidase - CPI chlorophyll-protein complex I - LHC light-harvesting complex - LNA linolenic acid - PSI photosystem I - PSII photosystem II - S relative senescence rate - t 1/2 lialf time for degradation  相似文献   

8.
Ribonuclease and Chlorophyllase Activities in Senescing Leaves   总被引:3,自引:0,他引:3  
The activities of two enzymes, ribonuclease and chlorophyllase were investigated during the senescence of leaves. Ribonuclease activities were measured in primary leaves of Phaseolus vulgaris, and related to the levels of nucleic acid, protein and chlorophyll. Similarly, changes in chlorophyllase activity during senescence of leaves of Raphanus sativus were measured and related to chlorophyll. During senescence the levels of each enzyme as well as its respective substrate declined. Retardation of senescence, by excision of young tissue from intact plants or by treatment of detached leaves with cytokinins resulted in a maintainace of both the substrate and enzyme levels. It was concluded that high levels of ribonuclease and chlorophyllase activity are not linked directly with the degradation of RNA and chlorophyll during leaf senescence.  相似文献   

9.
Fluorescent compounds (FCs) with spectral properties comparable to those of lipofuscin-like compounds are present in aqueous methanolic extracts of senescent meadow fescue, Festuca pratensis Huds., leaves. An HPLC system for the separation of FC from other fluorescent materials was developed. The chromatograms suggest that the FC-fraction consists of a large number of chemically related compounds. FCs are accumulated during senescence in leaves of a yellowing genotype, cv. Rossa. In leaves of a non-yellowing genotype, Bf 993, only traces of FCs appear at advanced stages of senescence.
FCs are regarded as final products of lipid peroxidation. Since both yellowing and non-yellowing genotypes are competent with regard to the degradation of galactolipids (the potential sources of polyunsaturated fatty acids) as well as regarding lipoxygenase (EC 1.13.11.12; a key enzyme of lipid peroxidation), and since incompentence to degrade chlorophyll is associated with lack of FC accumulation in the mutant genotype, it is hypothesized that the polar FCs present in senescent F. pratensis leaves represent catabolites of chlorophyll.  相似文献   

10.
Coupled, non-cyclic electron transport was measured for chloroplastsisolated from the primary leaves of Phaseolus vulgaris. Preparationsfrom young, fully expanded leaves gave good rates of electrontransport, but the rates obtained decreased by approximately80% during leaf senescence. Higher rates of electron transportwere recorded for chloroplasts isolated from primary leaveswhich had regreened following removal of the remainder of theshoot. With preparations from leaves of all ages, photophosphorylationwas coupled to electron transport with a mean P/2e ratio ofapproximately 1.3. No evidence was obtained for inactivationof chloroplasts from older leaves during isolation or assay,and it is suggested that the decrease in rate of electron transportover the period of senescence, and its increase during regreening,were consequences of changes in the composition and physicalproperties of the thylakoid membrane which occur in vivo. Thedecrease in rate of non-cyclic electron transport may be importantin limiting the rate of photosynthesis in the senescing leaves.  相似文献   

11.
DIXIT  A. B. 《Annals of botany》1988,62(6):643-651
Effects of bauxite and cement dusts on Amaranlhus dubius andPhaseolus vulgaris leaves were studied at cellular and ultrastructurallevels. Talc, an inert dust, was used as a reference material.Dusted and control leaf tissues were processed, sectioned andexamined light- and electron-microscopically. Naturally senescingleaves were also studied for comparison and understanding ofthe effects of particulates. While talc caused no alterations,both bauxite and cement induced variable cellular and ultrastructuralalterations in the dusted leaves, indicating activation of wound-repairand/or defence mechanisms and premature senescence. These alterationswere more pronounced in Phaseolus than in Amaranlhus. In addition,stress-related alterations were detected in bauxite-dusted Phaseolusleaves. Amaranlhus dubius Mart., calaloo, bauxite, cellular, cement, defence mechanisms, natural senescence, particulate, Phaseolus vulgaris L., bean, pollutant, premature senescence, stress, talc, ultrastructure, wound-repair mechanisms  相似文献   

12.
The 'stay-green' mutation cytG in soybean ( Glycine max ) partially inhibits the degradation of the light-harvesting complex II (LHCII) and the associated chlorophyll during monocarpic senescence. cytG did not alter the breakdown of the cytochrome b 6/ f complex, thylakoid ATP synthase or components of Photosystem I. In contrast, cytG accelerated the loss of oxygen evolution activity and PSII reaction-centre proteins. These data suggest that LHCII and other thylakoid components are degraded by separate pathways. In leaves induced to senesce by darkness, cytG inhibited the breakdown of LHCII and chlorophyll, but it did not enhance the loss of PSII-core components, indicating that the accelerated degradation of PSII reaction centre proteins in cytG was light dependent. Illumination of mature and senescent leaves of wild-type soybean in the presence of an inhibitor (lincomycin) of chloroplast protein synthesis revealed that senescence per se did not affect the rate of photoinhibition in leaves. Likewise, mature leaves of the cytG mutant did not show more photoinhibition than wild-type leaves. However, in senescent cytG leaves, photoinhibition proceeded more rapidly than in the wild-type. We conclude that the cytG mutation enhances photoinhibition in senescing leaves, and photoinhibition causes the rapid loss of PSII reaction-centre proteins during senescence in cytG .  相似文献   

13.
High molecular weight ribosomal RNA components and their pattern of loss on ageing of excised leaf sections were the same in the non-yellowing mutant and the normal genotype of Festuca pratensis even though the mutant showed retarded chlorophyll loss. Thus it appears that the genetic lesion does not extend to changes in the ribosomal RNA components of chloroplasts or cytoplasm.  相似文献   

14.
The lipid compositions of leaves from Festuca pratensis cv. Rossa (yellowing) were compared with those from a non-yellowing mutant, Bf 993. The leaves of Bf 993 contained a higher level of acyl lipids on both a fresh-weight and a dry-weight basis. Diacylgalactosylglycerol, diacylgalabiosylglycerol and phosphatidylinositol were relatively enriched in the Bf 993 mutant while phosphatidylcholine was relatively reduced. There were no differences in the fatty-acid compositions of individual lipids between the two varieties. During senescence, the lipids of cv. Rossa were progressively degraded over an 8-d period. In contrast little lipid degradation was observed in the Bf 993 mutant during the first 4 d. The results support the hypothesis that the slower senescence changes of the Bf 993 mutant may be due, in part, to an altered membrane lipid composition.II=Thomas (1982b)  相似文献   

15.
Howard Thomas 《Planta》1977,137(1):53-60
A study was made of the structure and function of senescent chloroplasts from a non-yellowing (NY) mutant of Festuca pratensis. Electron microscopy suggested that the stroma matrix was destroyed but that thylakoid membranes persisted in a loose, unstacked condition. By contrast, chloroplasts from the normal (Y) genotype lost both stroma and recognizable thylakoid systems. Fraction 1, the major protein of the stroma, disappeared from Y and NY at similar rates during senescence. The activities of photosystems I and II from NY also declined at a similar rate to Y photosystems. Polypeptides of chloroplast membranes were separated by SDS gel electrophoresis into at least 30 components. There was considerable heterogeneity in rates of breakdown of the different protein species of the membranes. Of the five major polypeptide components, two had kinetics of breakdown similar to those of stroma proteins and were lost from NY and Y at about the same rate, whereas the remaining three (one of which was tentatively identified as the apoprotein of the light-harvesting chlorophyll-protein complex) were more stable in NY than in Y. These results are discussed in relation to the mechanism and function of chloroplast disintegration during leaf senescence.Abbreviations RuDPC ribulose diphosphate carboxylase - NY and Y non-yellowing and normal genotypes of Festuca, respectively - PSI and PSII photosystems I and II, respectively - SDS sodium dodecyl sulphate - MW molecular weight - CF coupling factor  相似文献   

16.
The nucleic acids in the green and in the senescent leaves ofthree types of plant have been studied. High and low molecularweight RNA of the chloroplast is not present in senescent leavesof Xanthium pensylvanicum, but both cytoplasmic and chloroplasticfractions are found in yellow leaves of Vicia faba and Nicotianatabacum. RNA is more rapidly degraded than DNA in the leavesof these plants when they are detached, and kinetin treatmenttemporarily arrests the loss of chlorophyll and nucleic acid.Once X. pensylvanicum leaves are yellow and senescent they cannotbe re-greened, whereas those of Nicotiana spp., and to someextent those of V. faba, can be rejuvenated. We suggest thatthe retention of chloroplast RNA in yellow leaves may be a majorfactor determining their ability to re-green and that the patternof organelle senescence prior to the first stages of leaf autolysisand dehydration is species-specific.  相似文献   

17.
Excised embryos of Phaseolus vulgaris incubated in a mediumcontaining 10 mg dm–3 farnesol showed enhanced root growthwhereas the leaves remained rudimentary At lower concentrationsof exogenous farnesol normal leaf development occurred and rootgrowth was comparable to untreated cultures. Enhanced root growthalso occurred when excised embryos of Hordeum vulgare were treatedwith farnesol but only at 10 mg dm–3 and this treatmentdid not prevent leaf growth X-ray micro-probe analysis of leavesrevealed an increased phosphorus content in P vulgaris and adecreased sulphur content in H vulgare in comparison to untreatedplants. Hordeum vulgare L., barley, Phaseolus vulgaris, bean, embryo culture, farnesol, X-ray microprobe analysis, root growth  相似文献   

18.
Chloroplast protein synthesis was measured during the expansion,maturity and senescence of the oldest leaf of barley, Hordeumvulgare L., var. Hassan. A maximum rate of protein synthesisoccurred near the end of the expansion stage 9 d after sowing.Protein synthesis increased again at the beginning of senescenceand reached a new maximum at day 14 after sowing. Detachmentand incubation of leaves in the dark stimulated chioroplastprotein synthesis by fully expanded or by senescent leaves butnot by expanding leaves. If the detached leaves were kept inthe light, chloroplast protein synthesis was stimulated in fullyexpanded but not in senescent leaves. Short treatments (18 h)of leaf segments with growth substances in either light or indarkness, significantly changed the rate of protein synthesisshown by chloroplasts. The relationship between chloroplastprotein synthesis and leaf senescence is discussed. Key words: Hormones, light, maturity  相似文献   

19.
The senescence of excised discs of primary leaves of Phaseolus vulgaris, L., var. Red Kidney was followed by measuring the net breakdown of protein and chlorophyll. The chemical growth regulators indoleacetic acid, 2,4-dichlorophenoxy-acetic acid, gibberellic acid, kinetin, and 6-benzylaminopurine were relatively ineffective in retarding senescence in this tissue. White light, on the other hand, was very effective in senescence retardation. The response to light did not have the characteristics of a low energy (phytochrome) response and was blocked by concentrations of 3-(3,4-dichlorophenyl)-1, 1-dimethylurea which inhibited photosynthesis in the leaf discs. The light-induced retardation of senescence was concluded to be dependent on photosynthesis.  相似文献   

20.
The influence of NaCl on senescence-related parameters (proteinand chlorophyll concentrations, membrane permeability and chlorophyllfluorescence) was investigated in young and old leaves of fiverice cultivars differing in salt resistance. NaCl hastened thenaturally-occurring senescence of rice leaves which normallyappears during leaf ontogeny: it decreased chlorophyll and proteinconcentrations and increased membrane permeability and malondialdehydesynthesis. Such an acceleration of deteriorative processes affectedall leaves in salt-sensitive cultivars while it was more markedin oldest than in youngest leaves of salt-resistant genotypes.NaCl-induced senescence also involved specific modifications,such as an increase in basal non-variable chlorophyll fluorescence(F 0) recorded in all cultivars or a transient increase in solubleprotein concentration recorded in salt-resistant genotypes only.Alteration of membrane permeability appeared as one of the firstsymptoms of senescence in rice leaves and allowed discriminationamong cultivars after only 7 d of stress. In contrast, F v/F mratio (variable fluorescence/maximal fluorescence) was thesame for all cultivars during the first 18 d of stress and thuscould not be used for identifying salt-resistant rice exposedto normal light conditions. Relationships between parametersinvolved in leaf senescence are discussed in relation to salinityresistance of rice cultivars. Chlorophyll concentration; chlorophyll fluorescence; electrolyte leakage; magnesium; malondialdehyde; membrane permeability; NaCl; Oryza sativa L.; protein; rice; salinity resistance; senescence; UV absorbing substances  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号