首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiolipin (CL) is a major membrane phospholipid specifically localized in mitochondria. At the cellular level, CL has been shown to have a role in mitochondrial energy production, mitochondrial membrane dynamics, and the triggering of apoptosis. However, the in vivo role of CL in multicellular organisms is largely unknown. In this study, by analyzing deletion mutants of a CL synthase gene (crls-1) in Caenorhabditis elegans, we demonstrated that CL depletion selectively caused abnormal mitochondrial function and morphology in germ cells but not in somatic cell types such as muscle cells. crls-1 mutants reached adulthood but were sterile with reduced germ cell proliferation and impaired oogenesis. In the gonad of crls-1 mutants, mitochondrial membrane potential was significantly decreased, and the structure of the mitochondrial cristae was disrupted. Contrary to the abnormalities in the gonad, somatic tissues in crls-1 mutants appeared normal with respect to cell proliferation, mitochondrial function, and mitochondrial morphology. Increased susceptibility to CL depletion in germ cells was also observed in mutants of phosphatidylglycerophosphate synthase, an enzyme responsible for producing phosphatidylglycerol, a precursor phospholipid of CL. We propose that the contribution of CL to mitochondrial function and morphology is different among the cell types in C. elegans.  相似文献   

2.
Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome   总被引:12,自引:0,他引:12  
Cardiolipin (CL) and phosphatidylglycerol (PG) are the major polyglycerophospholipids observed in mammalian tissues. CL is exclusively found in the inner mitochondrial membrane and is required for optimal function of many of the respiratory and ATP-synthesizing enzymes. The role of CL in oxidative phosphorylation is, however, not fully understood and although reduced CL content leads to aberrant cell function, no human disorders with a primary defect in cardiolipin metabolism have been described. In this paper we present evidence that patients with the rare disorder X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060) have a primary defect in CL and PG remodeling. We investigated phospholipid metabolism in cultured skin fibroblasts of patients and show that the biosynthesis rate of PG and CL is normal but that the CL pool size is 75% reduced, indicating accelerated degradation. Moreover, the incorporation of linoleic acid, which is the characteristic acyl side chain found in mammalian CL, into both PG and CL is significantly reduced, whereas the incorporation of other fatty acids into these phospholipids is normal. We show that this defect was only observed in Barth syndrome patients' cells and not in cells obtained from patients with primary defects in the respiratory chain, demonstrating that the observed defect is not secondary to respiratory chain dysfunction. These results imply that the G4.5 gene product, which is mutated in Barth syndrome patients, is specifically involved in the remodeling of PG and CL and for the first time identify an essential factor in this important cellular process.  相似文献   

3.
Previous work from this laboratory has shown that isolated chick renal proximal tubule cells possess an Na+-dependent Pi transport system and that Pi uptake is stimulated under gluconeogenic conditions. It is shown in the present paper that gluconeogenesis is associated with a rapid incorporation of Pi into membrane phospholipids, particularly phosphatidylinositol, and some evidence has been obtained for a change in the relative amounts of phosphatidylinositol polyphosphates under gluconeogenic conditions. There is no increase in the total phospholipid phosphate content however, suggesting that pyruvate-induced incorporation of Pi into phospholipids represents accelerated turnover rather than a net increase in synthesis. It is suggested that the stimulation of Na+-dependent Pi uptake by pyruvate is related to the increased rate of phospholipid turnover. Thus Pi transport may be a further example of a physiological system that is influenced by phosphatidylinositol metabolism. The role of phosphatidylinositol phosphates could be to stimulate transfer of transporter molecules from internal stores to the brush-border membrane of the cell.  相似文献   

4.
Cardiolipin (CL) is a mitochondria-specific phospholipid synthesized by CL synthase (CLS). We describe here a human gene for CLS and its analysis via RNAi knockdown on apoptotic progression. Although mitochondrial membrane potential is unchanged in cells containing only 25% of the normal amount of CL, free cytochrome c (cyt. c) is detected in the intermembrane space and the mitochondria exhibit signs of reorganized cristae. However, the release of cyt. c from the mitochondria still requires apoptotic stimulation. Increased sensitivity to apoptotic signals and accelerated rates of apoptosis are observed in CL-deficient cells, followed by elevated levels of secondary necrosis. Apoptosis is thought to progress via binding of truncated Bid (tBid) to mitochondrial CL, followed by CL oxidation which results in cyt. c release. The exaggerated and accelerated apoptosis observed in CL-deficient cells is matched by an accelerated reduction in membrane potential and increased cyt. c release, but not by decreased tBid binding. This study suggests that the CL/cyt. c relationship is important in apoptotic progression and that regulating CL oxidation or/and deacylation could represent a possible therapeutic target.  相似文献   

5.
Mitochondrial dysfunction is implicated in most neurodegenerative diseases, including Alzheimer's disease (AD). We here combined experimental and computational approaches to investigate mitochondrial health and bioenergetic function in neurons from a double transgenic animal model of AD (PS2APP/B6.152H). Experiments in primary cortical neurons demonstrated that AD neurons had reduced mitochondrial respiratory capacity. Interestingly, the computational model predicted that this mitochondrial bioenergetic phenotype could not be explained by any defect in the mitochondrial respiratory chain (RC), but could be closely resembled by a simulated impairment in the mitochondrial NADH flux. Further computational analysis predicted that such an impairment would reduce levels of mitochondrial NADH, both in the resting state and following pharmacological manipulation of the RC. To validate these predictions, we utilized fluorescence lifetime imaging microscopy (FLIM) and autofluorescence imaging and confirmed that transgenic AD neurons had reduced mitochondrial NAD(P)H levels at rest, and impaired power of mitochondrial NAD(P)H production. Of note, FLIM measurements also highlighted reduced cytosolic NAD(P)H in these cells, and extracellular acidification experiments showed an impaired glycolytic flux. The impaired glycolytic flux was identified to be responsible for the observed mitochondrial hypometabolism, since bypassing glycolysis with pyruvate restored mitochondrial health. This study highlights the benefits of a systems biology approach when investigating complex, nonintuitive molecular processes such as mitochondrial bioenergetics, and indicates that primary cortical neurons from a transgenic AD model have reduced glycolytic flux, leading to reduced cytosolic and mitochondrial NAD(P)H and reduced mitochondrial respiratory capacity.  相似文献   

6.
The relationship between alterations in transmembrane potential, cell volume, and phospholipid fatty acid turnover has been examined in human erythrocytes by treating the cells with the monovalent cation ionophore valinomycin. Valinomycin increases the cellular uptake of tetra[3H]phenylphosphonium ion by erythrocytes, indicating membrane hyperpolarization, and causes net loss of potassium chloride and water from the cells leading to a decrease in cell volume. Treatment of erythrocytes with valinomycin also enhances incorporation of [9, 10-(3)H]oleic acid into phospholipids, primarily diacylphosphatidylethanolamine. After replacing intracellular chloride with sulfate and treating cells with the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate, exposure to valinomycin results in uptake of tetra[3H]phenylphosphonium ion and stimulation of [9, 10-(3)H]oleic acid incorporation, but, because anion efflux is prevented, no decrease in cell volume occurs. When tetra[3H]phenylphosphonium ion uptake is also prevented by suspending these cells in 125 mM KCl to dissipate the transmembrane potassium gradient, valinomycin still enhances [9, 10-(3)H] oleic acid incorporation into phospholipid. These results suggest that the presence of valinomycin in the membrane directly alters phospholipid fatty acid turnover and that some of the effects of this ionophore on cellular function previously attributed to alterations in transmembrane potential or cellular potassium content may instead be due to altered phospholipid turnover. Since it is possible that valinomycin may directly perturb phospholipid fatty acid turnover in other cells, the possibility that valinomycin-induced alterations in cellular function are due to altered phospholipid turnover rather than membrane hyperpolarization or altered potassium content should be considered in the interpretation of studies employing this ionophore.  相似文献   

7.
Normothermic ischaemic arrest of the isolated perfused rat heart causes profound changes in mitochondrial ultrastructure. Since the mitochondrial membranes contain a high percentage of phospholipids, an evaluation of the effect of different periods of ischaemia on mitochondrial phospholipid content and fatty acid composition was made. The results showed that ischaemia had no effect on the content of the different phospholipid classes and no correlation was observed between ultrastructural changes and mitochondrial phospholipid content. However, the phospholipid fatty acid composition of several phospholipids showed marked changes. For example, with lysophosphatidylcholine a progressive increase in the percentage saturated fatty acids was observed with increasing periods of ischaemia, while a reduction occurred in lysophosphatidylethanolamine. To determine whether the ischaemia-induced changes in mitochondrial phospholipid fatty acid composition had an effect on the physical properties of the membrane, the microviscosity of mitochondrial preparations was studied, using the lipophilic probe, 1,6-diphenyl-1,3,5-hexatrine. Mitochondria isolated from ischaemic hearts showed a progressive increase in fluorescence polarization with longer periods of ischaemia, indicating an overall increase in microviscosity. This phenomenon may be responsible for the increased mitochondrial fragility which is characteristic of ischaemic damage.  相似文献   

8.
Mitochondrial function and alzheimer's disease   总被引:3,自引:0,他引:3  
The brain is highly dependent on aerobic metabolism. Normal mitochondrial function is therefore likely to play a critical role in neuronal function and integrity. Defects in the mitochondrial oxidative phosphorylation pathway (OXPHOS) have been demonstrated in aging human tissue including brain. It is not clear whether underlying mitochondrial DNA mutations are responsible for the observed functional defects. The previously reported OXPHOS defects, in particular reduced cytochrome c oxidase activity, in Alzheimer's disease (AD) are not likely to be due to specific enzyme dysfunction. The falloff in cytochrome c oxidase activity in AD brains is more likely to be related to a global decline in mitochondrial activity manifested by downregulation in mitochondrial number. It is not definitely established where the observed mitochondrial changes are placed in the AD cascade. A number of factors might contribute to the observed changes in OXPHOS function including mitochondrial transport through axonal and dendritic processes, compromised regulatory feedback mechanisms responsible for individual complex-subunit synthesis, and complex assembly.  相似文献   

9.
Reconstitution of mitochondrial calcium transport activity requires the incorporation of membrane proteins into a lipidic ambient. Calcium uptake has been measured previously using Cytochrome oxidase vesicles. The enrichment of these vesicles with cardiolipin, an acidic phospholipid that is found only in the inner mitochondrial membrane of eukaryotic cells, strongly inhibits calcium transport, in remarkable contrast with the activation effect that cardiolipin exerts upon other mitochondrial transporters and enzymes. The relation of the inactivation of calcium transport to the physical state of the bilayer was studied by following the polarization changes of 1,6-diphenyl-1,3,5-hexatriene (DPH) and by flow cytometry in the cardiolipin-enriched liposomes with incorporated mitochondrial solubilized proteins. Non-bilayer molecular arrangements in the cardiolipin-supplemented liposomes, detected by flow cytometry, may produce the fluidity changes observed by fluorescence polarization of DPH. Fluidity changes correlate with the abolition of calcium uptake, but have no effect on the establishment of a membrane potential in the vesicles required for calcium transport activity. Changes in the membrane structure and uniporter function are observed in the combined presence of cardiolipin and calcium leading to a modified lipid configuration.  相似文献   

10.
Cardiolipin, a polyunsaturated acidic phospholipid, is found exclusively in bacterial and mitochondrial membranes where it is intimately associated with the enzyme complexes of the respiratory chain. Cardiolipin structure and concentration are central to the function of these enzyme complexes and damage to the phospholipid may have consequences for mitochondrial function. The fluorescent dye, 10 nonyl acridine orange (NAO), has been shown to bind cardiolipin in vitro and is frequently used as a stain in living cells to assay cardiolipin content. Additionally, NAO staining has been used to measure the mitochondrial content of cells as dye binding to mitochondria is reportedly independent of the membrane potential. We used confocal microscopy to examine the properties of NAO in cortical astrocytes, neonatal cardiomyocytes and in isolated brain mitochondria. We show that NAO, a lipophilic cation, stained mitochondria selectively. However, the accumulation of the dye was clearly dependent upon the mitochondrial membrane potential and depolarisation of mitochondria induced a redistribution of dye. Moreover, depolarisation of mitochondria prior to NAO staining also resulted in a reduced NAO signal. These observations demonstrate that loading and retention of NAO is dependant upon membrane potential, and that the dye cannot be used as an assay of either cardiolipin or mitochondrial mass in living cells.  相似文献   

11.
Nucleoside diphosphate kinases (NDPKs/Nm23), responsible for intracellular di- and tri-phosphonucleoside homeostasis, play multi-faceted roles in cellular energetic, signaling, proliferation, differentiation and tumor invasion. The mitochondrial NDPK-D, the NME4 gene product, is a peripheral protein of the inner membrane. Several new aspects of the interaction of NDPK-D with the inner mitochondrial membrane have been recently characterized. Surface plasmon resonance analysis using recombinant NDPK-D and different phospholipid liposomes showed that NDPK-D interacts electrostatically with anionic phospholipids, with highest affinity observed for cardiolipin, a phospholipid located mostly in the mitochondrial inner membrane. Mutation of the central arginine (R90) in a surface exposed cationic RRK motif unique to NDPK-D strongly reduced phospholipid interaction in vitro and in vivo. Stable expression of NDPK-D proteins in HeLa cells naturally almost devoid of this isoform revealed a tight functional coupling of NDPK-D with oxidative phosphorylation that depends on the membrane-bound state of the enzyme. Owing to its symmetrical hexameric structure exposing membrane binding motifs on two opposite sides, NDPK-D could bridge liposomes containing anionic phospholipids and promote lipid transfer between them. In vivo, NDPK-D could induce intermembrane contacts and facilitate lipid movements between mitochondrial membranes. Most of these properties are reminiscent to those of the mitochondrial creatine kinase. We review here the common properties of both kinases and we discuss their potential roles in mitochondrial functions such as energy production, apoptosis and mitochondrial dynamics.  相似文献   

12.
The pathway for membrane phospholipid fatty acid turnover in situ may be important in the regulation of the composition and turnover of the lipid microenvironment of membrane proteins. This pathway has been characterized further by studying the activation and incorporation of [9,10(n)-3H]oleic acid and transesterification of [1-14C]oleoyl-CoA into membrane phospholipids by isolated erythrocyte membrane ghosts and inside-out vesicles derived from these ghosts. Erythrocyte ghosts and sealed vesicles of defined orientation prepared from them have been widely employed in studies of the function of membrane proteins, particularly those which mediate the transport of ions and sugars. Preparation of inside-out vesicles from ghosts by exposure to alkaline hypotonic conditions results in elution of some membrane proteins but no loss of membrane phospholipid. Compared to ghosts, the ability of inside-out vesicles to activate and incorporate [9,10(n)-3H]oleic acid into phospholipid is diminished by over 90% and the ability of inside-out vesicles to transesterify [1-14C]oleoyl-CoA to phospholipid is diminished by over 50%. These findings indicate that exposure of erythrocyte membranes to the alkaline hypotonic conditions required for inside-out vesicle preparation results in loss or inactivation of both acyl-CoA ligase and acyl-CoA-lysophospholipid acyltransferase activities. This lability of the enzymes for in situ phospholipid fatty acid turnover should be considered in the design and interpretation of studies concerned with elucidation of the relationship between phospholipid fatty acid turnover and the regulation of membrane protein function in this membrane preparation.  相似文献   

13.
Thyrotropin releasing hormone (TRH) accelerates the turnover of phosphatidylinositol in GH3 cells ('phospholipid response'). From the analysis of inositol phosphates in the presence of Li+ which inhibits their dephosphorylation, it can be concluded that the hydrolysis of phosphatidylinositol 4,5-biphosphate, and possibly of phosphatidylinositol 4-phosphate by phospholipase C is markedly accelerated by TRH. It appears that this reaction initiates the acceleration of phosphatidylinositol turnover. The specificity of hormonally regulated phospholipase C reaction for polyphosphoinositides has important implications for the potential role of the phospholipid response as a mechanism of membrane signal transduction.  相似文献   

14.
Poot M  Pierce RH 《Cytometry》1999,35(4):311-317
BACKGROUND: The possible relationships between changes in mitochondrial membrane potential and other mitochondrial functions during apoptosis remain controversial. METHODS: To detect concomitant changes in mitochondrial function during apoptosis, we performed correlated multiparameter flow cytometry after simultaneous cell staining with several dyes. RESULTS: After camptothecin treatment, nonapoptotic cells exhibited a concomitant rise in mitochondrial membrane potential [8-(4'-chloromethyl) phenyl-2, 3, 5, 6, 11, 12, 14, 15-octahydro-1H, 4H, 10H, 13H-diquinolizino-8H-xanthylium chloride, or CMXRos; CMXRos fluorescence divided by MitoTracker Green fluorescence], NADH level (ultraviolet-excited blue autofluorescence), and oxidative turnover (H2-CMXRos oxidation). Frankly apoptotic cells showed a decreased mitochondrial membrane potential, NADH level, and oxidative turnover. Oxidative turnover was not sensitive to antimycin A treatment, which suggests that H2-CMXRos oxidation in these cells may be due to lipid peroxidation. In addition, frankly apoptotic cells showed lower cardiolipin levels (by nonyl-acridine orange staining). The efficiency of energy transfer between nonyl-acridine orange and CMXRos was slightly lower in camptothecin-treated nonapoptotic cells and reduced to zero in frankly apoptotic cells. CONCLUSIONS: We conclude that, in an initial phase of camptothecin-induced apoptosis, mitochondrial activity is increased and a subtle loss of structural integrity of the mitochondrial membranes takes place. In frankly apoptotic cells, all measured parameters of mitochondrial collapse and lipid peroxidation occurs.  相似文献   

15.
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.  相似文献   

16.
Changes in mitochondrial morphology and dynamics influence mitochondrial function and ultimately damage neurons in Alzheimer’s disease (AD). Amyloid β (Aβ) is a major factor in the pathogenesis of AD. Although it has been proved that Aβ can affect the dynamics of mitochondria, there is little known on the precise dynamic process. Thus, MTT, Hoechst 33342, and Annexin V/PI analysis were used to study Aβ25–35 neurotoxity on PC12 cells, live cell station and image processing were applied to study the moving parameters and characters of mitochondria. We also studied changes of mitochondrial membrane potential and reactive oxygen species production. The results showed that long-term exposure of PC12 cells to Aβ25–35 resulted in increase of mitochondrial number and decrease of mitochondrial length and size, which presented fluctuated during early time and dramatic changes occurred after 6 h. Low concentration exposure caused little mitochondrial changes before 24 h while short time exposure induced mitochondrial fragmentation that could be recovered to normal. Mitochondrial membrane potential dissipation and reactive oxygen species production were observed, as well as apparent cell apoptosis with significant morphological changes. These data suggest that mitochondrial fission can be reversed during Aβ25–35-induced PC12 cell apoptosis, depending on the concentration and exposure time of Aβ25–35, which may be helpful in AD prevention and therapy.  相似文献   

17.
Alzheimer disease (AD) is associated with aberrant processing of the amyloid precursor protein (APP) by γ-secretase, via an unknown mechanism. We recently showed that presenilin-1 and -2, the catalytic components of γ-secretase, and γ-secretase activity itself, are highly enriched in a subcompartment of the endoplasmic reticulum (ER) that is physically and biochemically connected to mitochondria, called mitochondria-associated ER membranes (MAMs). We now show that MAM function and ER–mitochondrial communication—as measured by cholesteryl ester and phospholipid synthesis, respectively—are increased significantly in presenilin-mutant cells and in fibroblasts from patients with both the familial and sporadic forms of AD. We also show that MAM is an intracellular detergent-resistant lipid raft (LR)-like domain, consistent with the known presence of presenilins and γ-secretase activity in rafts. These findings may help explain not only the aberrant APP processing but also a number of other biochemical features of AD, including altered lipid metabolism and calcium homeostasis. We propose that upregulated MAM function at the ER–mitochondrial interface, and increased cross-talk between these two organelles, may play a hitherto unrecognized role in the pathogenesis of AD.  相似文献   

18.
Fatty acid binding protein 3 (FABP3) (also known as H-FABP) is a member of the intracellular lipid-binding protein family, and is mainly expressed in cardiac muscle tissue. The in vivo function of FABP3 is proposed to be in fatty acid metabolism, trafficking, and cell signaling. Our previous study found that FABP3 is highly regulated in patients with ventricular septal defect (VSD), and may play a significant role in the development of human VSD. In the present study, we aimed to investigate the impact of FABP3 knockdown by RNA interference (RNAi) on apoptosis and mitochondrial function of embryonic carcinoma (P19) cells. The results revealed that downregulated FABP3 expression promoted apoptosis, and resulted in mitochondrial deformation, increased mitochondrial membrane potential (MMP), and decreased intracellular ATP synthesis. In addition, the knockdown of FABP3 also led to excess intracellular ROS production. However, there was no obvious influence on the amount of mitochondrial DNA. Collectively, our results indicated that FABP3 knockdown promoted apoptosis and caused mitochondrial dysfunction in P19 cells, which might be responsible for the development of human VSD.  相似文献   

19.
Mitochondria play a prominent role in cardiac energy metabolism, and their function is critically dependent on the integrity of mitochondrial membranes. Disorders characterized by mitochondrial dysfunction are commonly associated with cardiac disease. The mitochondrial phospholipid cardiolipin directly interacts with a number of essential protein complexes in the mitochondrial membranes including the respiratory chain, mitochondrial metabolite carriers, and proteins critical for mitochondrial morphology. Barth syndrome is an X-linked disorder caused by an inherited defect in the biogenesis of the mitochondrial phospholipid cardiolipin. How cardiolipin deficiency impacts on mitochondrial function and how mitochondrial dysfunction causes cardiomyopathy has been intensively studied in cellular and animal models of Barth syndrome. These findings may also have implications for the molecular mechanisms underlying other inherited disorders associated with defects in cardiolipin, such as Sengers syndrome and dilated cardiomyopathy with ataxia (DCMA).  相似文献   

20.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号