首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人们对控制胆固醇吸收和血浆植物甾醇水平的分子基础了解尚少.ABCG5和ABCG8的发现使得理解甾醇吸收的分子基础获得突破.ABCG5和ABCG8主要涉及植物甾醇代谢,而其他基因涉及胆固醇吸收.最近,一种新胆固醇吸收阻止剂(ezetimibe)的问世,给胆固醇吸收和血浆植物甾醇水平基因控制研究提供新的亮点.主要综述胆固醇吸收和血浆植物甾醇水平的基因控制,关注调节它们的共同点和不同点,讨论这一领域的最近发展和展望未来希望.  相似文献   

2.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

3.
The plasma concentrations of cholesterol precursor sterols and plant sterols vary over a 5- to 10-fold range among normolipidemic individuals, and provide indices of the relative rates of cholesterol synthesis and fractional absorption. In the present study, we examined the relative contributions of genetic and environmental factors to variation in the plasma concentrations and sterol-cholesterol ratios of five noncholesterol sterols, including the 5alpha-saturated derivative of cholesterol (cholestanol), two precursors in the cholesterol biosynthesis pathway (desmosterol and lathosterol), and two phytosterols (campesterol and sitosterol). Plasma sterol concentrations were highly stable in 30 individuals measured over a 48 week period. Regression of offspring sterol levels on the parental values indicated that plasma levels of all five noncholesterol sterols were highly heritable. Analysis of monozygotic and dizygotic twin pairs also indicated strong heritability of all five sterols. Two common sequence variations (D19H and T400K) in ABCG8, an ABC half-transporter defective in sitosterolemia, were associated with lower concentrations of plant sterols in parents, and in their offspring.Taken together, these findings indicate that variation in the plasma concentrations of noncholesterol sterols is highly heritable, and that polymorphism in ABCG8 contributes to genetic variation in the plasma concentrations of plant sterols.  相似文献   

4.
Ezetimibe normalizes metabolic defects in mice lacking ABCG5 and ABCG8   总被引:3,自引:0,他引:3  
The ATP binding cassette transporters ABCG5 (G5) and ABCG8 (G8) limit the accumulation of neutral sterols by restricting sterol uptake from the intestine and promoting sterol excretion into bile. Humans and mice lacking G5 and G8 (G5G8-/-) accumulate plant sterols in the blood and tissues. However, despite impaired biliary cholesterol secretion, plasma and liver cholesterol levels are lower in G5G8-/- mice than in wild-type littermates. To determine whether the observed changes in hepatic sterol metabolism were a direct result of decreased biliary sterol secretion or a metabolic consequence of the accumulation of dietary noncholesterol sterols, we treated G5G8-/- mice with ezetimibe, a drug that reduces the absorption of both plant- and animal-derived sterols. Ezetimibe feeding for 1 month sharply decreased sterol absorption and plasma levels of sitosterol and campesterol but increased cholesterol in both the plasma (from 60.4 to 75.2 mg/dl) and the liver (from 1.1 to 1.87 mg/g) of the ezetimibe-treated G5G8-/- mice. Paradoxically, the increase in hepatic cholesterol was associated with an increase in mRNA levels of HMG-CoA reductase and synthase. Together, these results indicate that pharmacological blockade of sterol absorption can ameliorate the deleterious metabolic effects of plant sterols even in the absence of G5 and G8.  相似文献   

5.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

6.
Screening of 932 adults on the Pacific island of Kosrae for plasma plant sterol levels disclosed three subjects, two of them asymptomatic, with phytosterolemia. Sequencing the ATP binding cassette subfamily G member 8 (ABCG8) gene revealed a novel exon 2 mutation that causes a change in codon 24 from glutamine to histidine and a frame shift followed by a premature stop codon, precluding the formation of a functional ABCG8 protein. Genotyping of 1,090 Kosraens revealed 150 as carriers, a 13.8% carrier rate. DNA sequencing of 67 carriers revealed the same mutation as in the probands. In carriers, plasma campesterol and sitosterol levels were 55% and 30% higher, respectively, than in noncarriers. Moreover, compared with noncarriers, carriers showed 21% lower plasma levels of lathosterol, a surrogate marker for cholesterol biosynthesis. There was no difference between the groups in plasma total cholesterol, triglycerides, apolipoprotein B, or apolipoprotein A-I levels. In summary, on the island of Kosrae, a strong founder effect of a mutant ABCG8 allele results in a large number of carriers with increased plasma plant sterol levels and decreased lathosterol levels. The latter finding suggests that heterozygosity for a mutated ABCG8 allele results in a modest increase in dietary cholesterol absorption and a decrease in cholesterol biosynthesis.  相似文献   

7.
Baboons with high and low lipemic responses to dietary lipids differ in intestinal cholesterol absorption and hepatic cholesterol metabolism. ATP-binding cassette (ABC) transporters play an important role in cholesterol absorption and hepatic cholesterol metabolism. Using frozen tissues from high- and low-responding baboons maintained on the cholesterol and fat-enriched diet, we determined the relative expression of ABCA1, ABCG5, ABCG8, and 27-hydroxylase genes in the liver and intestine using TaqMan real-time polymerase chain reaction. There was no consistent difference in the expression of ABC-transporters and 27-hydroxylase in the intestine between high- and low-responding baboons. However, hepatic expression of sterol 27-hydroxylase, ABCG5, and ABCG8 was higher in low-responding baboons than in high-responding baboons. There was also a significant correlation between the expression of sterol 27-hydroxylase and ABCG5, and ABCG8 in both the liver and the intestine. These results suggest that differences in hepatic lipid metabolism but not in cholesterol absorption between high- and low-responding baboons observed previously may be mediated by the differences in the expression levels of 27-hydroxylase, ABCG5, and ABCG8.  相似文献   

8.
Polymorphisms in the ATP binding cassette (ABC) transporters ABCG5 and ABCG8 are related to plasma plant sterol concentrations. It is not known whether these polymorphisms are also associated with variations in serum plant sterol concentrations during interventions affecting plant sterol metabolism. We therefore decided to study changes in serum plant sterol concentrations with ABCG5/G8 polymorphisms after consumption of plant stanol esters, which decrease plasma plant sterol concentrations. Cholesterol-standardized serum campesterol and sitosterol concentrations were significantly associated with the ABCG8 T400K genotype, as were changes in serum plant sterol concentrations after consumption of plant stanols. The reduction of -57.1 +/- 38.3 10(2) x micromol/mmol cholesterol for sitosterol in TT subjects was significantly greater compared with the -36.0 +/- 18.7 reduction in subjects with the TK genotype (P = 0.021) and the -16.9 +/- 13.0 reduction in subjects with the KK genotype (P = 0.047). Changes in serum campesterol concentrations showed a comparable association. No association with serum LDL cholesterol was found. Genetic variation in ABCG8 not only explains cross-sectional differences in serum plant sterol concentrations but also determines a subject's responsiveness to changes in serum plant sterols during interventions known to affect plant sterol metabolism.  相似文献   

9.
OBJECTIVE: The aim of this study was to investigate the cholesterol-lowering mechanisms of corn fiber oil (CFO), ferulate phytostanyl esters (FPEs) and parent compounds of FPE, including sitostanol and ferulic acid, in hamsters. METHOD: Seventy male Golden Syrian hamsters were randomly assigned to six experimental diets for 4 weeks: (1) cornstarch-casein-sucrose-based control diet (control); and (2) control diet plus 0.1% (wt/wt) cholesterol (cholesterol-control). The remaining four groups were given cholesterol-control diet with: (3) 10% (wt/wt) CFO; (4) 0.5% (wt/wt) sitostanol; (5) 0.23% (wt/wt) ferulic acid; and (6) 0.73% (wt/wt) FPE. At the end of dietary intervention, total plasma cholesterol, high-density lipoprotein cholesterol and triglyceride concentrations were determined. Parameters of cholesterol kinetics, including cholesterol absorption and synthesis, as well as mRNA expression of sterol transporters such as Niemann-Pick C1 like 1 (NPC1L1), ATP-binding cassette G5 (ABCG5) and ABCG8, were assessed. RESULTS: Supplementation with CFO decreased (P<.0001) plasma total cholesterol levels by 29% as compared with the cholesterol-control group, while FPE and sitostanol reduced (P<.02) cholesterolemia by 15% and 14%, respectively. CFO and sitostanol decreased (P<.05) cholesterol absorption by 24% compared to the cholesterol-control group. Dietary intervention did not alter the intestinal gene expression of ABCG5, ABCG8 and NPC1L1. CONCLUSION: The present results show that the CFO-induced and sitostanol-induced decrease in cholesterol absorption is independent of intestinal enterocyte sterol transporters such as ABCG5, ABCG8 and NPC1L1 in hamsters.  相似文献   

10.
Liver X receptor (LXR) is a nuclear receptor that plays a crucial role in orchestrating the trafficking of sterols between tissues. Treatment of mice with a potent and specific LXR agonist, T0901317, is associated with increased biliary cholesterol secretion, decreased fractional cholesterol absorption, and increased fecal neutral sterol excretion. Here we show that expression of two target genes of LXRalpha, the ATP-binding cassette (ABC) transporters Abcg5 and Abcg8, is required for both the increase in sterol excretion and the decrease in fractional cholesterol absorption associated with LXR agonist treatment. Mice expressing no ABCG5 and ABCG8 (G5G8(-/-) mice) and their littermate controls were treated for 7 days with T0901317. In wild type animals, treatment with the LXR agonist resulted in a 3-fold increase in biliary cholesterol concentrations, a 25% reduction in fractional cholesterol absorption, and a 4-fold elevation in fecal neutral sterol excretion. In contrast, the LXR agonist did not significantly affect biliary cholesterol levels, fractional cholesterol absorption, or neutral fecal sterol excretion in the G5G8(-/-) mice. Thus Abcg5 and Abcg8 are required for LXR agonist-associated changes in dietary and biliary sterol trafficking. These results establish a central role for ABCG5 and ABCG8 in promoting cholesterol excretion in vivo.  相似文献   

11.
The ATP-binding cassette (ABC) sterol transporters are responsible for maintaining cholesterol homeostasis in mammals by participating in reverse cholesterol transport (RCT) or transintestinal cholesterol efflux (TICE). The heterodimeric ABCG5/G8 carries out selective sterol excretion, preventing the abnormal accumulation of plant sterols in human bodies, while homodimeric ABCG1 contributes to the biogenesis and metabolism of high-density lipoproteins. A sterol-binding site on ABCG5/G8 was proposed at the interface of the transmembrane domain and the core of lipid bilayers. In this study, we have determined the crystal structure of ABCG5/G8 in a cholesterol-bound state. The structure combined with amino acid sequence analysis shows that in the proximity of the sterol-binding site, a highly conserved phenylalanine array supports functional implications for ABCG cholesterol/sterol transporters. Lastly, in silico docking analysis of cholesterol and stigmasterol (a plant sterol) suggests sterol-binding selectivity on ABCG5/G8, but not ABCG1. Together, our results provide a structural basis for cholesterol binding on ABCG5/G8 and the sterol selectivity by ABCG transporters.  相似文献   

12.
We previously reported that liver-specific overexpression of ABCG5/G8 in mice is not atheroprotective, suggesting that increased biliary cholesterol secretion must be coupled with decreased intestinal cholesterol absorption to increase net sterol loss from the body and reduce atherosclerosis. To evaluate this hypothesis, we fed low density lipoprotein receptor-knockout (LDLr-KO) control and ABCG5/G8-transgenic (ABCG5/G8-Tg)xLDLr-KO mice, which overexpress ABCG5/G8 only in liver, a Western diet containing ezetimibe to reduce intestinal cholesterol absorption. On this dietary regimen, liver-specific ABCG5/G8 overexpression increased hepatobiliary cholesterol concentration and secretion rates (1.5-fold and 1.9-fold, respectively), resulting in 1.6-fold increased fecal cholesterol excretion, decreased hepatic cholesterol, and increased (4.4-fold) de novo hepatic cholesterol synthesis versus LDLr-KO mice. Plasma lipids decreased (total cholesterol, 32%; cholesteryl ester, 32%; free cholesterol, 30%), mostly as a result of reduced non-high density lipoprotein-cholesterol and apolipoprotein B (apoB; 36% and 25%, respectively). ApoB-containing lipoproteins were smaller and lipid-depleted in ABCG5/G8-TgxLDLr-KO mice. Kinetic studies revealed similar 125I-apoB intermediate density lipoprotein/LDL fractional catabolic rates, but apoB production rates were decreased 37% in ABCG5/G8-TgxLDLr-KO mice. Proximal aortic atherosclerosis decreased by 52% (male) and 59% (female) in ABCG5/G8-TgxLDLr-KO versus LDLr-KO mice fed the Western/ezetimibe diet. Thus, increased biliary secretion, resulting from hepatic ABCG5/G8 overexpression, reduces atherogenic risk in LDLr-KO mice fed a Western diet containing ezetimibe. These findings identify distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism and atherosclerosis.  相似文献   

13.
We previously identified two inbred mouse strains, C57BL/6J and CASA/Rk, with different plasma plant sterol levels. An intercross between these strains revealed a broad plasma plant sterol locus on chromosome 14, which peaked at 17 centimorgan (cM) with a maximum logarithm of the odds score of 9.9. Studies in a chromosome 14 congenic strain, 14KK, with a 4-60 cM CASA/Rk interval on the C57BL/6J background revealed that males, but not females, had decreased plasma plant sterol levels and intestinal cholesterol absorption. In two subcongenic strains, 14PKK and 14DKK, with 4-19.5 and 19.5-60 cM CASA/Rk intervals, respectively, both males and females had decreased plasma plant sterol levels and decreased intestinal cholesterol absorption. Compatible with the decreased plasma plant sterol phenotype, 14PKK mice had increased biliary plant sterol excretion, whereas 14DKK mice did not. Therefore, gender-dependent interactions of genes at the 14PKK and 14DKK intervals are likely to underlie the 14KK interval effect on plasma plant sterol levels and sterol absorption from the intestine. These studies confirm the plasma plant sterol locus on mouse chromosome 14 and provide evidence that there are at least two sets of genes operating: one set affecting intestinal sterol absorption and biliary excretion, and the other set mainly affecting intestinal sterol absorption.  相似文献   

14.
Possible mechanisms for the cholesterol-lowering effects of plant stanol esters were addressed by feeding hamsters diets containing stanol esters, cholesterol, or cholestyramine/lovastatin. ABCA1, ATP binding cassette G1 (ABCG1), ABCG5, ABCG8, and Niemann-Pick C1-like 1 (NPC1L1) mRNA levels were then estimated in duodenum, jejunum, and ileum. Plasma cholesterol was decreased by 36% and 94% in animals fed stanol esters and cholestyramine/lovastatin, respectively. Cholesterol feeding increased plasma cholesterol by 2.5-fold. Plasma plant sterols were unchanged by stanol ester feeding but became undetectable by feeding cholestyramine/lovastatin. Cholesterol and stanols accumulated in enterocytes of animals fed cholesterol and stanol esters, respectively. ABCG5 and ABCG8 mRNA levels were decreased by stanol esters and cholestyramine/lovastatin. Cholesterol feeding markedly increased ABCA1 and ABCG1 expression and modestly increased ABCG5/ABCG8. NPC1L1 mRNA was not significantly altered by any of the diets. ABCG1, ABCG5, ABCG8, and NPC1L1 mRNAs were highest in cells of the upper villus, whereas ABCA1 mRNA was highest in cells of the lower villus. The results suggest that cholesterol lowering effect of stanol esters is unrelated to changes in mRNA levels of intestinal ABC sterol transporters or NPC1L1. Cholesterol flux regulates ABC expression but not NPC1L1. The different localization of ABCA1 suggests a different function for this protein than for ABCG1, ABCG5, ABCG8, and NPC1L1.  相似文献   

15.
In this study we analyzed functions of ATP-binding cassette (ABC) transporters involved in sterol transport from Caco-2 cells. Treatment with a synthetic liver x receptor ligand elevated both mRNA and protein levels of ABCG5, G8, and ABCA1. The ligand stimulated cholesterol efflux, suggesting that ABC transporters are involved in it. To identify the acceptors of cholesterol, potential molecules such as apolipoprotein A-I, glycocholic acid, phosphatidylcholine, and bile acid micelles were added to the medium. Apo A-I, a known acceptor of cholesterol transported by ABCA1, elevated cholesterol efflux on the basal side, whereas the others raised cholesterol efflux on the apical side. Moreover, bile acid micelles preferentially augmented plant sterol efflux rather than cholesterol. Finally, in HEK293 cells stably expressing ABCG5/G8, bile acid micelle-mediated sterol efflux was significantly accelerated. These results indicate that ABCG5/G8, unlike ABCA1, together with bile acids should participate in sterol efflux on the apical surface of Caco-2 cells.  相似文献   

16.
Intestinal cholesterol absorption is a major determinant of plasma low density lipoprotein-cholesterol (LDL-C) concentrations. Ezetimibe (SCH 58235) and its analogs SCH 48461 and SCH 58053 are novel potent inhibitors of cholesterol absorption whose mechanism of action is unknown. These studies investigated the effect of SCH 58053 on cholesterol metabolism in female 129/Sv mice. In mice fed a low cholesterol rodent diet containing SCH 58053, cholesterol absorption was reduced by 46% and fecal neutral sterol excretion was increased 67%, but biliary lipid composition and bile acid synthesis, pool size, and pool composition were unchanged. When the dietary cholesterol content was increased either 10- or 50-fold, those animals given SCH 58053 manifested lower hepatic and biliary cholesterol concentrations than did their untreated controls. Cholesterol feeding increased the relative mRNA level for adenosine triphosphate-binding cassette transporter A1 (ABCA1), ABC transporter G5 (ABCG5), and ABC transporter G8 (ABCG8) in the jejunum, and of ABCG5 and ABCG8 in the liver, but the magnitude of this increase was generally less if the mice were given SCH 58053. We conclude that the inhibition of cholesterol absorption effected by this new class of agents is not mediated via changes in either the size or composition of the intestinal bile acid pool, or the level of mRNA expression of proteins that facilitate cholesterol efflux from the enterocyte, but rather may involve disruption of the uptake of luminal sterol across the microvillus membrane.  相似文献   

17.
ABCG5 and ABCG8 are expressed in gallbladder epithelial cells   总被引:2,自引:0,他引:2  
Gallbladder epithelial cells (GBEC) are exposed to high biliary cholesterol concentrations on their apical (AP) surface. The mechanisms of cholesterol absorption and efflux by these cells are not known. We hypothesized that ABCG5 and ABCG8 are expressed in GBEC and mediate AP cholesterol efflux. Human gallbladder cDNA expressed message for ABCG5 and ABCG8. Cultured murine GBEC also expressed abcg5 and abcg8 mRNA and protein, as did cultured canine GBEC. Interestingly, treatment with model bile containing supersaturating concentrations of cholesterol, or treatment with LXRalpha/RXR ligands, did not lead to differences in expression of ABCG5 or ABCG8 in the murine or the canine cells. The subcellular localization of ABCG5 and ABCG8 did show alterations, with predominantly intracellular localization at baseline and predominantly AP localization following treatment with model bile or LXRalpha ligand. GBEC therefore express ABCG5 and ABCG8; these sterol transporters may play a role in mediating AP cholesterol efflux in the gallbladder epithelium.  相似文献   

18.
ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile   总被引:1,自引:0,他引:1  
The major pathway for the removal of cholesterol from the body is via secretion into the bile. Three members of the ATP binding cassette (ABC) family, ABCG5 (G5), ABCG8 (G8), and ABCB4 (MDR2), are required for the efficient biliary export of sterols. Here, we examined the interdependence of these three ABC transporters for biliary sterol secretion. Biliary lipid levels in mice expressing no MDR2 (Mdr2-/- mice) were compared with those of Mdr2-/- mice expressing 14 copies of a human G5 (hG5) and hG8 transgene (Mdr2-/-;hG5G8Tg mice). Mdr2-/- mice had only trace amounts of biliary cholesterol and phospholipids. The Mdr2-/-;hG5G8Tg mice had biliary cholesterol levels as low as those of Mdr2-/- mice. Thus, MDR2 expression is required for G5G8-mediated biliary sterol secretion. To determine whether the reduction in fractional absorption of dietary sterols associated with G5G8 overexpression is secondary to the associated increase in biliary cholesterol, we compared the fractional absorption of sterols in Mdr2-/-;hG5G8Tg and hG5G8Tg animals. Inactivation of MDR2 markedly attenuated the reduction in fractional sterol absorption associated with G5G8 overexpression. These results are consistent with the notion that increased biliary cholesterol secretion contributes to the reduction in fractional sterol absorption associated with G5G8 overexpression.  相似文献   

19.
Genetic basis of sitosterolemia   总被引:3,自引:0,他引:3  
The molecular mechanisms regulating the amount of dietary cholesterol retained by the body, as well as the body's ability to exclude other dietary sterols selectively, are poorly understood. An average Western diet will contain approximately 250-500 mg of dietary cholesterol and approximately 200-400 mg of non-cholesterol sterols, of which plant sterols are the major constituents. Approximately 50-60% of dietary cholesterol is absorbed and retained by the normal human body, but less than 1% of the non-cholesterol sterols are retained. There thus exists a subtle mechanism that allows the body to distinguish between cholesterol and non-cholesterol sterols. In sitosterolemia, a rare autosomal recessive disorder, affected individuals hyperabsorb and retain not only cholesterol but also all other sterols, including plant and shellfish sterols from the intestine. Consequently, patients with this disease have very high levels of plant sterols in the plasma, and develop tendon and tuberous xanthomas, accelerated atherosclerosis, and premature coronary artery disease. The STSL locus has been mapped to human chromosome 2p21. Mutations in two tandem ABC genes, ABCG5 and ABCG8, encoding sterolin-1 and -2, respectively, are now known to be mutant in sitosterolemia. The identification of these genes should now lead to a better understanding of the molecular mechanism(s) governing the highly selective absorption and retention of cholesterol by the body. Indeed, it is the very existence of this disease that has given credence to the hypothesis that there is a molecular pathway that regulates dietary cholesterol absorption and sterol excretion by the body.  相似文献   

20.
Sitosterolemia is a rare autosomal recessive disorder characterized by (a) intestinal hyperabsorption of all sterols, including cholesterol and plant and shellfish sterols, and (b) impaired ability to excrete sterols into bile. Patients with this disease have expanded body pools of cholesterol and very elevated plasma plant-sterol species and frequently develop tendon and tuberous xanthomas, accelerated atherosclerosis, and premature coronary artery disease. In previous studies, we have mapped the STSL locus to human chromosome 2p21. Recently, we reported that a novel member of the ABC-transporter family, named "sterolin-1" and encoded by ABCG5, is mutated in 9 unrelated families with sitosterolemia; in the remaining 25 families, no mutations in sterolin-1 could be identified. We identified another ABC transporter, located <400 bp upstream of sterolin-1, in the opposite orientation. Mutational analyses revealed that this highly homologous protein, termed "sterolin-2" and encoded by ABCG8, is mutated in the remaining pedigrees. Thus, two highly homologous genes, located in a head-to-head configuration on chromosome 2p21, are involved as causes of sitosterolemia. These studies indicate that both sterolin-1 and sterolin-2 are indispensable for the regulation of sterol absorption and excretion. Identification of sterolin-1 and sterolin-2 as critical players in the regulation of dietary-sterol absorption and excretion identifies a new pathway of sterol transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号