首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers.  相似文献   

2.
The silk proteins, fibroin and sericin, are produced in the silk gland of Bombyx mori, and hydrophilic sericin envelops fibroin with successive sticky layers in the formation of a cocoon. To study the biological functions of sericin, we focused on the serine-rich sericin peptide consisting of 38 amino acids, which is a highly conserved and internally repetitive sequence of a sericin protein. The corresponding gene was chemically synthesized, and the PCR-amplified gene was ligated to oligomerize sericin peptide and fused at the amino terminus to a His-tagged and proteolytic cleavage sequence in an inducible expression vector. When the dimers of sericin peptides were overexpressed in Escherichia coli, the transformants showed a prominent increase in cell viability after freezing in medium. Further, the purified dimeric sericin peptide from E. coli was found to be effective in protecting lactate dehydrogenase from denaturation caused by freeze-thaw. Both of these protective effects against freezing stress in cells and proteins were also observed with sericin hydrolysate. These results indicate that this unique sericin peptide, like sericin, has a high cryoprotective activity and will be valuable as a new biomaterial for industrial use.  相似文献   

3.
采用酪氨酸酶对丝素蛋白催化氧化,考察了酶促氧化反应对丝素蛋白结构及丝素膜性能的影响。研究结果表明,酪氨酸酶可催化氧化丝素蛋白中酪氨酸残基生成多巴和多巴醌结构衍生物,并且两者含量随催化反应时间延长呈波动性变化;酶促反应后丝素蛋白中游离氨基含量下降,丝素风干膜断裂强度增加,表明酶促氧化中丝素大分子间发生自交联。XRD结果表明酪氨酸酶催化氧化对丝素蛋白二级结构有一定影响;SEM显示酶促改性可能影响丝素蛋白冷冻干燥膜多孔形态结构。  相似文献   

4.
Huang G  Li G  Chen H  He Y  Yao Q  Chen K 《Cell proliferation》2010,43(5):515-527
Objectives: Previous studies have reported that fibroin peptides can be used in a new strategy for development of anti‐diabetic peptide drugs. In this study, we separated silk fibroin hydrolysates (SFH) containing silk fibroin peptides into four components according to their molecular weight and tested the effects of these together with three synthetic silk fibroin hexapeptides GAGAGS, GAGAGY, GAGAGA on cell proliferation of 3T3‐L1 preadipocytes. The aim of this study was to investigate protein expression profiles of 3T3‐L1 preadipocytes and those treated with SFH component Fraction I and the synthetic silk fibroin hexapeptide GAGAGS to be able to elucidate difference in protein expression between the 3T3‐L1 preadipocytes and those treated with fibroin peptides Fraction I and GAGAGS. Materials and methods: SFH was separated by dialysis. MTT assays were performed to test effects of SFH components and synthetic silk fibroin hexapeptides on 3T3‐L1 preadipocyte proliferation. We generated proteome maps using two‐dimensional gel electrophoresis and analysed them by peptide mass fingerprinting. Results: GAGAGS and peptide mixtures, Fraction I and Fraction II, had significant effect in promoting 3T3‐L1 preadipocyte proliferation. In the proteomic analysis, 73 protein spots were successfully identified, including 15 which were differentially expressed. Conclusions: Our results show that some silk fibroin peptides of low molecular weight SFH and hexapeptide GAGAGS affected 3T3‐L1 preadipocyte proliferation.  相似文献   

5.
Recombinant sericin proteins of different molecular masses (17.4, 31.9, and 46.5 kDa), based on the 38-amino acid repetitive motif of native sericin, were cloned, expressed, and purified. The recombinant sericin self-assembled during dialysis (starting concentration of 2.5 mg/ml) forming twisted fibers. Circular dichroism and Fourier transform infrared spectroscopy studies demonstrated protein conformational transitions occurred from random coil to beta-sheets during the dialysis. Congo red-stained recombinant sericin fibrils exhibited apple-green birefringence, indicating long-range order in the array of beta-sheets. Biosynthetic sericin has a high content of polar amino acids (e.g. > 40 mol % serine), leading to a beta-sheet conformation formed by hydrogen bonding via polar zipper interactions. Analysis of recombinant sericin sequence using Mandel-Gutfreund's (Mandel-Gutfreund, Y., and Gregoret, L. M. (2002) J. Mol. Biol. 323, 453-461) definition of polar and non-polar amino acids showed that the hydrophobicity pattern resembles the most frequent pattern of amyloidogenic proteins, polar amino acid aggregates (PPPPP). Many beta-proteins and peptides are designed to study amyloidogenesis using a polar/non-polar alternating pattern (PNPNPN). Sericin-like proteins or peptides provide an alternative model in terms of hydrophobicity pattern with which to explore questions related to beta-sheet formation and amyloidogenesis. The glue-like property of sericin is attributed to the hydrogen bonding between serine residues of sericin with serine residues in the fibroin structural components of silk fiber.  相似文献   

6.
Wound healing is a biological process directed to the restoration of tissue that has suffered an injury. An important phase of wound healing is the generation of a basal epithelium able to wholly replace the epidermis of the wound. A broad range of products derived from fibroin and sericin from Bombyx mori silk are used to stimulate wound healing. However, so far the molecular mechanism underlying this phenomenon has not been elucidated. The aim of this work was to determine the molecular basis underlying wound healing properties of silk proteins using a cell model. For this purpose, we assayed fibroin and sericin in a wound healing scratch assay using MDA-MB-231 and Mv1Lu cells. Both proteins stimulated cell migration. Furthermore, treatment with sericin and fibroin involved key factors of the wound healing process such as upregulation of c-Jun and c-Jun protein phosphorylation. Moreover, fibroin and sericin stimulated the phosphorylation of ERK 1/2 and JNK 1/2 kinases. All these experiments were done in the presence of specific inhibitors for some of the cell signalling pathways referred above. The obtained results revealed that MEK, JNK and PI3K pathways are involved in fibroin and sericin stimulated cells migration. Inhibition of these three kinases prevented c-Jun upregulation and phosphorylation by fibroin or sericin. Fibroin and sericin were tested in the human keratinocyte cell line, HaCaT, with similar results. Altogether, our results showed that fibroin and sericin initiate cell migration by activating the MEK, JNK and PI3K signalling pathways ending in c-Jun activation.  相似文献   

7.
Non-catalytic hydrothermal decomposition of sericin and fibroin from silk waste into useful protein and amino acids was examined in a closed batch reactor at various temperatures, reaction times, and silk to water ratios to examine their effects on protein and amino acid yields. For the decomposition of sericin, the highest protein yield was found to be 0.466 mg protein/mg raw silk, obtained after 10 min hydrothermal reaction of silk waste at 1:100 silk to water ratio at 120 degrees C. The highest amino acid yield was found to be 0.203 mg amino acids/mg raw silk, obtained after 60 min of hydrothermal reaction of silk waste at 1:20 silk to water ratio at 160 degrees C. For the hydrothermal decomposition of fibroin, the highest protein yield was 0.455 mg protein/mg silk fibroin (1:100, 220 degrees C, 10 min) and that of amino acids was 0.755 mg amino acids/mg silk fibroin (1:50, 220 degrees C, 60 min). The rate of silk fibroin decomposition could be described by surface reaction kinetics. The soluble reaction products were freeze-dried to obtain sericin and fibroin particles, whose conformation and crystal structure of the particles were shown to differ from the original silk materials, particularly in the case of fibroin, in which the change from beta-sheet conformation to alpha-helix/random coil was observed.  相似文献   

8.
L-asparaginase (ASNase) is one basic drug in the treatment of acute lymphoblastic leukemia (ALL). Because its half-life time is too short and it is easy to arouse allergic reaction, use in practical clinic is considerably limited. Silk fibroin (SF) with different molecular mass from 40 to 120 kDa is a natural biocompatible protein and could be used as a novel bioconjugate for enzyme modification to overcome its usual shortcomings mentioned above. When the enzyme was bioconjugated covalently with the water-soluble fibroin by glutaraldehyde, the enzyme kinetic properties and immune characteristics in vivo of the resulting silk fibroin-L-asparaginase (SF-ASNase) bioconjugates were investigated in detail. The results show that the modified ASNase was characterized by its higher residual activity (nearly 80%), increased heat and storage stability and resistance to trypsin digestion, and its longer half-life (63 h) than that of intact ASNase (33 h). The abilities of intact and modified ASNases to arouse allergic reaction are 2(4) and 2(1) antibody titers, respectively. Bioconjugation of silk fibroin significantly helps to reduce the immunogenicity and antigenicity of the enzyme. The apparent Michaelis constants of the modified ASNase (K(m(app))=0.844 x 10(-3)mol L(-1)) was approximately six times lower than that of enzyme alone, which suggests that the affinity of the enzyme to substrate l-asparagine elevated when bioconjugated covalently with silk fibroin. SF-ASNase bioconjugates could overcome the common shortcomings of the native form. Therefore, the modified ASNase coupled with silk fibroin has the potential values of being studied and developed as a new bioconjugate drug.  相似文献   

9.
Composition variation of a complex peptide mixture under enzymatic transformation can be tracked by mass spectrometry (MS). In this report, papain-catalyzed esterification of fibroin peptides was investigated at the individual peptide level using liquid chromatography-mass spectrometry with selected ion monitoring. Optimal conditions for maximizing ester formation were obtained using a water-to-pentanol ratio of 1:9 at pH 2.8 and 40°C; however, the optimum conditions varied for individual peptides. The optimum pH levels were 2.5 and 2.8 for the tetrapeptides with a tyrosine or a valine residue and those with alanine or serine residues, respectively. The optimum pH shifted to 3.4 for dipeptide esters with a tyrosine residue. Tetrapeptides had a relatively higher rate of esterification above 50°C. Alhough, the profiles of peptides and their esters in the esterification reaction were significantly affected by the reaction conditions, alanyl-glycine ester represented the largest fraction in the mixture under most reaction conditions. As demonstrated here, MS analysis of peptide mixtures can be used to elucidate specific reaction conditions for the enrichment of particular peptide products.  相似文献   

10.
The regulation of the biodegradation rate of 3D-regenerated silk fibroin scaffolds and the avoidance of premature collapse are important concerns for their effective applications in tissue engineering. In this study, bromelain, which is specific to sericin, was used to remove sericin from silk, and high molecular weight silk fibroin was obtained after the fibroin fibers were dissolved. Afterwards, a 3D scaffold was prepared via freeze-drying. The Sodium dodecyl sulfate–polyacrylamide gel electrophoresis results showed that the average molecular weight of the regenerated silk fibroin prepared by using the bromelain-degumming method was approximately 142.2 kDa, which was significantly higher than that of the control groups prepared by using the urea- and Na2CO3-degumming methods. The results of enzyme degradation in vitro showed that the biodegradation rate and internal three-dimensional structure collapse of the bromelain-degumming fibroin scaffolds were significantly slower than those of the two control scaffolds. The proliferation activity of human umbilical vein vascular endothelial cells inoculated in bromelain-degumming fibroin scaffolds was significantly higher than that of the control scaffolds. This study provides a novel preparation method for 3D-regenerated silk fibroin scaffolds that can effectively resist biodegradation, continuously guide cell growth, have good biocompatibility, and have the potential to be used for the regeneration of various connective tissues.  相似文献   

11.
Bombyx mori silk fibroin molecule is known to exist in two distinct structural forms: silk I (unprocessed silk fibroin) and silk II (processed silk fibroin). Using synthetic peptides, we attempt to explore the structural role played by Ser and Tyr residues on the appearance of silk I structural form of the fibroin. Twelve selected peptides (1-12) incorporating Ser and Tyr residues in the (Ala-Gly)(n) copolypeptide, that is, the sequences mimicking the primary structure of B. mori silk fibroin molecule, have been investigated under the silk I state, employing high-resolution (13)C cross-polarization/magic-angle spinning (CP/MAS) NMR spectroscopy. To acquire the silk I structural form, all the peptides were dissolved in 9 M LiBr and then dialyzed extensively against water, as established previously for the synthetic (Ala-Gly)(15) copolypeptide and B. mori silk fibroin. The diagnostic line shape of the Ala C(beta) peaks and the conformation-dependent (13)C chemical shifts of Ala and Gly resonances are presented to analyze and characterize the structural features. The results indicate that the incorporation of one Ser and/or one Tyr residue(s) at selected position in the basic (Ala-Gly)(15) sequence tend to retain predominantly the silk I structure. Conversely, the repeat pentameric and octameric Ala-Gly-Ser-Gly-Ala-Gly sequences, for example, (Ala-Gly-Ser-Gly-Ala-Gly)(5) or (Ala-Gly-Ser-Gly-Ala-Gly)(8), preferred predominantly the silk II form. The peptide sequences incorporating Ser and Tyr residue(s) into repeat Ala-Gly-Ser-Gly-Ala-Gly sequences, however, adopted the silk II structure with certain content structural heterogeneity or randomness, more pronounced for specific peptides studied. Interestingly, the crystalline Cp fraction of B. mori silk fibroin, when mixed with (Ala-Gly-Ser-Gly-Ala-Gly)(5) sequence in a 5:1 molar ratio, dissolved in 9 M LiBr, and dialyzed against distilled water, favor the silk I form. The finding tends to suggest that the less stable silk I form in (Ala-Gly-Ser-Gly-Ala-Gly)(n) sequences is likely to be induced and facilitated via intermolecular interactions with the Cp fraction, which predominantly prefers the silk I form under similar conditions; however, the hydrogen-bond formation involving O(gamma)H groups of the Ser residues may have some implications.  相似文献   

12.
Taddei P  Monti P 《Biopolymers》2005,78(5):249-258
The structural organization of Bombyx mori silk fibroin was investigated by infrared (IR) spectroscopy. To this aim, (AG)15 and other model peptides of varying chain length, containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid phase method and their spectroscopic properties were determined. Both the position and the relative content of Y, V, and S residues in the (AG)n model system appeared critical in determining the preferred conformation, i.e., silk I, silk II, and unordered structures. Curve fitting analysis in the amide I range showed that the model peptides with prevailing silk II structure displayed different beta-sheet content, which was dependent on the degree of interruption of the (AG)n sequence. In this regard, the bands at about 1000 and 980 cm(-1), specifically assigned to the AG sequence of the B. mori silk fibroin chain, were identified as marker of the degree of interruption of the (AG)n sequence.A stable silk I structure was observed only when the Y residue was located near the chain terminus, while a silk I --> silk II conformational transition occurred when it was positioned in the central region of the peptide.Analysis of the second-derivative spectra in the amide I range allowed us to identify a band at 1639 cm(-1) (4 --> 1 hydrogen-bonded type II beta-turns), which is characteristic of the silk I conformation.  相似文献   

13.
Recent efforts have yielded a number of short peptide sequences with useful binding, sensing, and cellular uptake properties. In order to attach these sequences to tyrosine residues on intact proteins, a three-component Mannich-type strategy is reported. Two solid phase synthetic routes were developed to access peptides up to 20 residues in length with anilines at either the N- or C-termini. In the presence of 20 mM formaldehyde, these functional groups were coupled to tyrosine residues on proteins under mild reaction conditions. The identities of the resulting bioconjugates were confirmed using mass spectrometry and immunoblot analysis. Screening experiments have demonstrated that the method is compatible with substrates containing all of the amino acids, including lysine and cysteine residues. Importantly, tyrosine residues on proteins exhibit much faster reaction rates, allowing short peptides containing this residue to be coupled without cross reactions.  相似文献   

14.
A few bacterial species, mostly gram-negatives, were found to attach themselves and grow on silk buried in soil. On the contrary, no fungi were isolated in such experiments. Growth was more abundant on raw silk (composed of sericin and fibroin) than on degummed silk (fibroin only) indicating that the majority of these bacteria use sericin rather than fibroin for growth. Electron microscopy demonstrated that bacteria formed a biofilm on the fabric and caused extensive damage to the fibers resulting in considerable reduction in the mechanical properties. Of the three main bacterial species isolated from silk exposed to soil or by enrichment cultures of silk cocoons, only Pseudomonas (Burkholderia) cepacia appeared to be able to use fibroin as a sole source of carbon and nitrogen for growth. Indeed, in laboratory experiments, pure cultures of P. cepacia were found to form a well-developed biofilm on fibroin, to hydrolyze fibroin, and to produce an extracellular enzyme attacking this protein. The reported data indicate that bacteria but not fungi may attack and degrade silk proteins and thus cause irreversible damage to silk artifacts of artistic or historical interest.  相似文献   

15.
This paper reports the structure-dependent molecular orientation behavior of sericin, an adhesive silk protein secreted by silkworm, Bombyx mori. Although application of sericin as a biomaterial is anticipated because of its unique characteristics, sericin's physicochemical properties remain unclear, mainly because of its vulnerability to heat or alkaline treatment during separation from fibroin threads. This study employed intact sericin obtained from fibroin-deficient mutant silkworm to investigate the relationship between molecular orientation and the secondary structure of sericin. Sericin films were artificially stretched after moistening with aqueous ethanol of various concentrations. The resulting molecular orientation was analyzed using polarized infrared spectroscopy. These analyses indicated that formation of aggregated strands among extended sericin chains induced by ethanol treatment is the key to generating molecular orientation. Strong intermolecular hydrogen bonds are inferred to allow aggregated strands' stretching-force transmission, thereby causing molecular orientation.  相似文献   

16.
Although silk is used to produce textiles and serves as a valuable biomaterial in medicine, information on silk proteins of the cocoon is limited. Scanning electron microscopy was applied to morphologically characterise the sample and the solubility of cocoon in lithium thiocyanate and 2‐DE was carried out with multi‐enzyme in‐gel digestion followed by MS identification of silk‐peptides. High‐sequence coverage of the silk cocoon proteins fibroin light and heavy chain, sericins and fibrohexamerins was revealed and PTMs as heavy phosphorylation of silk fibroin heavy chain; lysine hydroxylation and Lys‐>allysine formation have been observed providing evidence for lysine‐mediated cross linking of silk as found in collagens, which has not been reported so far. Tyrosine oxidation verified the presence of di‐tyrosine cross links. A high degree of sequence conflicts probably representing single‐nucleotide polymorphisms was observed. PTM and sequence conflicts may be modulating structure and physicochemical properties of silk.  相似文献   

17.
18.
Taddei P  Asakura T  Yao J  Monti P 《Biopolymers》2004,75(4):314-324
For a deeper insight into the structure of Bombyx mori silk fibroin, some model peptides containing tyrosine (Y), valine (V), and serine (S) in the basic (AG)n sequence were synthesized by the solid-phase method and analyzed by Raman spectroscopy in order to clarify their conformation and to evaluate the formation and/or disruption of the ordered structure typical of B. mori silk fibroin upon incorporation of Y, V, and S residues into the basic (AG)n sequence. The Raman results indicated that the silk I structure remains stable only when the Y residue is positioned near the chain terminus; otherwise, a silk I --> silk II conformational transition occurs. The peptides AGVGAGYGAGVGAGYGAGVGAGYG(AG)3 and (AG)3YG(AG)2VGYG(AG)3YG(AG)3 treated with LiBr revealed a prevalent silk II conformation; moreover, the former contained a higher amount of random coil than the latter. This result was explained in relation to the different degrees of interruption of the (AG)n sequence. The Raman analysis of the AGSGAG-containing samples confirmed that the AGSGAG hexapeptide is a good model for the silk II crystalline domain. As the number of AGSGAG repeating units decreased, the random coil content increased. The study of the Y domain (I850/I830 intensity ratio) allowed us to hypothesize that in the packing characteristic of Silk I and Silk II conformations the Y residues experience different environments and hydrogen-bonding arrangements; the packing typical of silk I structure traps the tyrosyl side chains in environments more unfavorable to phenoxyl hydrogen-bonding interactions.  相似文献   

19.
The potential for using tyrosinase to graft the polysaccharide chitosan (Ch) onto Bombyx mori silk fibroin (SF) was examined. FT-IR spectroscopy coupled to HPLC amino acid analysis showed that mushroom tyrosinase (MT) catalyses the oxidation of tyrosine (Tyr) of SF to electrophilic o-quinones. Kinetic studies showed that only a fraction of the Tyr residues available on the SF chain were oxidized. This result was interpreted in the light of the structure assumed by SF in aqueous solution: Tyr aromatic side chain groups buried into the folded hydrophobic portions of the chain were probably less accessible to MT for steric reasons. Using slightly acidic conditions (pH 6), it was possible to modify SF under homogeneous conditions. FT-IR spectroscopy provided evidence that Ch was grafted onto MT-oxidized SF: the o-quinones were found to undergo a subsequent non-enzymatic reaction with nucleophilic amino groups of Ch via Schiff-base and Michael addition mechanisms. Various factors, i.e. reaction time, pH, MT/SF ratio, were found to influence the grafting yield. The highest grafting yield was achieved at pH 7, i.e. more favorable to MT activity rather than to Ch solubility, suggesting that the determining step of the grafting reaction is the formation of o-quinones. The FT-IR spectroscopy revealed that grafting induced a beta-sheet --> random coil conformational transition.  相似文献   

20.
Thermal aggregation of betaL-crystallin was higher in the presence of peptide fragments generated from oxidized and trypsin-digested betaL-crystallin compared with thermal aggregation of the control proteins without oxidized betaL-crystallin fragments. Increased aggregation of betaL-crystallin was also observed despite the presence of alpha-crystallin (which has anti-aggregating properties) in the system. Self-aggregation of the oxidized betaL-crystallin fragments per se was not observed under the experimental conditions. Reverse-phase HPLC analysis of the precipitate obtained after heating a mixture of betaL-crystallin and oxidized betaL-crystallin fragments revealed that more than one peptide co-precipitates with betaL-crystallin. Electrospray mass spectrometry analysis of the peptides revealed that the molecular weight(s) of the peptides ranged from 1400-1800. Tandem mass spectrometry and a data base search revealed that two of the peptides originated from betaA4-crystallin (LTIFEQENFLGR, residues 121-132) and betaB3-crystallin (AINGTWVGYEFPGYR, residues 153-167) respectively. Oxidized synthetic peptides representing the same sequence were also found to enhance the aggregation of betaL-crystallin in a manner similar to oxidized lens betaL-crystallin peptides. These data suggest that the polypeptides generated after oxidation and proteolysis of betaL-crystallins interact with denaturing proteins and facilitate their aggregation and light scattering, thus behaving like anti-chaperones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号