首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The denatured states of alpha-lactalbumin, which have features of a molten globule state, have been studied to elucidate the energetics of the molten globule state and its contribution to the stability of the native conformation. Analysis of calorimetric and CD data shows that the heat capacity increment of alpha-lactalbumin denaturation highly correlates with the degree of disorder of the residual structure of the state. As a result, the denaturational transition of alpha-lactalbumin from the native to a highly ordered compact denatured state, and from the native to the disordered unfolded state are described by different thermodynamic functions. The enthalpy and entropy of the denaturation of alpha-lactalbumin to compact denatured state are always greater than the enthalpy and entropy of its unfolding. This difference represents the unfolding of the molten globule state. Calorimetric measurements of the heat effect associated with the unfolding of the molten globule state reveal that it is negative in sign over the temperature range of molten globule stability. This observation demonstrates the energetic specificity of the molten globule state, which, in contrast to a protein with unique tertiary structure, is stabilized by the dominance of negative entropy and enthalpy of hydration over the positive conformational entropy and enthalpy of internal interactions. It is concluded that at physiological temperatures the entropy of dehydration is the dominant factor providing stability for the compact intermediate state on the folding pathway, while for the stability of the native state, the conformational enthalpy is the dominant factor.  相似文献   

2.
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.  相似文献   

3.
Bai P  Luo L  Peng Zy 《Biochemistry》2000,39(2):372-380
The molten globule state of alpha-lactalbumin (alpha-LA) has been considered a prototype of partially folded proteins. Despite the importance of molten globules in understanding the mechanisms of protein folding and its relevance to some biological phenomena, site-specific information on the structure and dynamics of a molten globule is limited, largely because of the high conformational flexibility and heterogeneity. Here, we use selective isotope labeling and (19)F NMR to investigate the solvent accessibility and side-chain dynamics of aromatic residues in the molten globule of alpha-LA. Comparison of these properties with those of the native and unfolded protein indicates that the alpha-LA molten globule is highly heterogeneous; each residue has its unique solvent accessibility and motional environment. Many aromatic residues normally buried in the interior of native alpha-LA remain significantly buried in the molten globule and the side-chain dynamics of these residues are highly restricted. Our results suggest that hydrophobic and van der Waals interactions mediated by the inaccessible surface area could be sufficient to account for all the stability of the alpha-LA molten globule, which is approximately 50% of the value for the native protein.  相似文献   

4.
The structure, stability, and unfolding-refolding kinetics of a chimeric protein, in which the amino acid sequence of the flexible loop region (residues 105-110) comes from equine lysozyme and the remainder of the sequence comes from bovine alpha-lactalbumin were studied by circular dichroism spectroscopy and stopped-flow measurements, and the results were compared with those of bovine alpha-lactalbumin. The substitution of the flexible loop in bovine alpha-lactalbumin with the helix D of equine lysozyme destabilizes the molten globule state, although the native state is significantly stabilized by substitution of the flexible loop region. The kinetic refolding and unfolding experiments showed that the chimeric protein refolds significantly faster and unfolds substantially slower than bovine alpha-lactalbumin. To characterize the transition state between the molten globule and the native states, we investigated the guanidine hydrochloride concentration dependence of the rate constants of refolding and unfolding. Despite the significant differences in the stabilities of both the molten globule and native states between the chimeric protein and bovine alpha-lactalbumin, the free energy level of the transition state is not affected by the amino acid substitution in the flexible loop region. Our results suggest that the destabilization in the molten globule state of the chimeric protein is caused by the disruption of the non-native interaction in the flexible loop region and that the disruption of the non-native interaction reduces the free energy barrier of refolding. We conclude that the non-native interaction in the molten globule state may act as a kinetic trap for the folding of alpha-lactalbumin.  相似文献   

5.
M Ikeguchi  S Sugai  M Fujino  T Sugawara  K Kuwajima 《Biochemistry》1992,31(50):12695-12700
The unfolding and refolding of a derivative of alpha-lactalbumin, in which the disulfide bond between Cys6 and Cys120 is selectively reduced and S-carboxymethylated, are investigated by equilibrium and kinetic circular dichroism measurements. The native conformation of this derivative is known to be essentially identical to that of intact alpha-lactalbumin. The equilibrium unfolding of the derivative involves a stable intermediate, which is also similar to the molten globule state of the disulfide intact protein. The results of stopped-flow circular dichroism experiments show that the same intermediate is formed rapidly as a transient intermediate in kinetic refolding. The conformational stabilities for the native and intermediate states have been estimated and compared with the stabilities for the corresponding states of intact alpha-lactalbumin. The stabilization of the native state by the disulfide has been interpreted in terms of a decrease in chain entropy in the unfolded state and elimination of the strain imposed on the disulfide bond in the native state. The molten globule state is also stabilized by the disulfide bond, although the degree of stabilization of the molten globule state is smaller than of the native state. The results suggest that, in the molten globule state, some ordered structures are present within the loop moiety formed by the 6-120 disulfide.  相似文献   

6.
This study characterized a protein complex in human milk that induces apoptosis in tumor cells but spares healthy cells. The active fraction was purified from casein by anion exchange chromatography. Unlike other casein components the active fraction was retained by the ion exchanger and eluted after a high salt gradient. The active fraction showed N-terminal amino acid sequence identity with human milk alpha-lactalbumin and mass spectrometry ruled out post-translational modifications. Size exclusion chromatography resolved monomers and oligomers of alpha-lactalbumin that were characterized using UV absorbance, fluorescence, and circular dichroism spectroscopy. The high molecular weight oligomers were kinetically stable against dissociation into monomers and were found to have an essentially retained secondary structure but a less well organized tertiary structure. Comparison with native monomeric and molten globule alpha-lactalbumin showed that the active fraction contains oligomers of alpha-lactalbumin that have undergone a conformational switch toward a molten globule-like state. Oligomerization appears to conserve alpha-lactalbumin in a state with molten globule-like properties at physiological conditions. The results suggest differences in biological properties between folding variants of alpha-lactalbumin.  相似文献   

7.
We have investigated the thermal unfolding of bovine alpha-lactalbumin by means of circular dichroism spectroscopy in the far- and near-ultraviolet regions, and shown that the native alpha-lactalbumin undergoes heat and cold denaturation. The guanidine hydrochloride-induced unfolding of alpha-lactalbumin was also investigated by circular dichroism spectroscopy at various temperatures from 261 to 318 K. It is shown that the population of the molten globule state is strongly dependent on temperature and that the molten globule state does not accumulate during the guanidine hydrochloride-induced unfolding transition at 261 K. Our results indicate that the molten globule state of alpha-lactalbumin undergoes cold denaturation as the native alpha-lactalbumin does, and that the heat capacity change of unfolding from the molten globule to the unfolded state is positive and significant. The present results further support the idea that the molten globule and the unfolded states do not belong to the same thermodynamic state, and that the native, molten globule and unfolded states are sufficient for interpreting the guanidine hydrochloride-induced unfolding behavior of alpha-lactalbumin.  相似文献   

8.
Pressure-induced reversible conformational changes of sperm whale apomyoglobin have been studied between 30 bar and 3000 bar on individual residue basis by utilizing 1H/15N hetero nuclear single-quantum coherence two-dimensional NMR spectroscopy at pH 6.0 and 35 degrees C. Apomyoglobin showed a series of pressure-dependent NMR spectra as a function of pressure, assignable to the native (N), intermediates (I), molten globule (MG) and unfolded (U) conformers. At 30 bar, the native fold (N) shows disorder only in the F helix. Between 500 bar and 1200 bar, a series of locally disordered conformers I are produced, in which local disorder occurs in the C helix, the CD loop, the G helix and part of the H helix. At 2000 bar, most cross-peaks exhibit severe line-broadening, suggesting the formation of a molten globule, but at 3000 bar all the cross-peaks reappear, showing that the molten globule turns into a well-hydrated, mobile unfolded conformation U. Since all the spectral changes were reversible with pressure, apomyoglobin is considered to exist as an equilibrium mixture of the N, I, MG and U conformers at all pressures. MG is situated at 2.4+/-(0.1) kcal/mol above N at 1 bar and the unfolding transition from the combined N-I state to MG is accompanied by a loss of partial molar volume by 75+/-(3) ml/mol. On the basis of these observations, we postulate a theorem that the partial molar volume of a protein decreases in parallel with the loss of its conformational order.  相似文献   

9.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the study of the structure, dynamics, and folding of proteins in solution. It is particularly powerful when applied to dynamic or flexible systems, such as partially folded molten globule states of proteins, which are not usually amenable to X-ray crystallography. In this article, NMR methods suitable for the detailed characterisation of molten globule states are described. The specific method used to study the molten globule is determined by the quality of the NMR spectrum obtained. Molten globules are characterised by significant levels of secondary structure. Site-specific hydrogen-deuterium exchange experiments can be used to identify residues located in regions of secondary structure in the molten globule. If spectra characterised by sharp peaks are observed for the molten globule then information about secondary structure can be obtained by analysis of (1)H(alpha), (13)C(alpha), (13)C(beta), and (13)CO chemical shifts; this can be supplemented by (15)N relaxation studies. For molten globules characterised by extremely broad peaks (15)N-edited NMR experiments carried out in increasing concentrations of denaturants can be used to study the relative stabilities of different regions of structure. Examples of the application of these methods to the study of the low pH molten globule states of alpha-lactalbumin and apomyoglobin are presented.  相似文献   

10.
A compact denatured state is often observed under a mild denaturation condition for various proteins. A typical example is the alpha-lactalbumin molten globule. Although the molecular compactness and shape are the essential properties for defining the molten globule, there have been ambiguities of these properties for the molten globule of alpha-lactalbumin. Using solution X-ray scattering, we have examined the structural properties of two types of molten globule of alpha-lactalbumin, the apo-protein at neutral pH and the acid molten globule. The radius of gyration for the native holo-protein was 15.7 A, but the two different molten globules both had a radius of gyration of 17.2 A. The maximum dimension of the molecule was also increased from 50 A for the native state to 60 A for the molten globule. These values clearly indicate that the molten globule is not as compact as the native state. The increment in the radius of gyration was less than 10% for the alpha-lactalbumin molten globule, compared with up to 30% for the molten globules of other globular proteins. Intramolecular disulfide bonds restrict the molecular expansion of the molten globule. The distance distribution function of the alpha-lactalbumin molten globule is composed of a single peak suggesting a globular shape, which is simply swollen from the native state. The scattering profile in the high Q region of the molten globule indicates the presence of a significant amount of tertiary fold. Based on the structural properties obtained by solution X-ray scattering, general and conceptual structural images for the molten globules of various proteins are described and compared with the individual, detailed structural model obtained by nuclear magnetic resonance.  相似文献   

11.
Chakraborty S  Ittah V  Bai P  Luo L  Haas E  Peng Z 《Biochemistry》2001,40(24):7228-7238
The fluorescence properties of three variants of alpha-lactalbumin (alpha-LA) containing a single tryptophan residue were investigated under native, molten globule, and unfolded conditions. These proteins have levels of secondary structure and stability similar to those of the wild type. The fluorescence signal in the native state is dominated by that of W104, with the signal of W60 and W118 significantly quenched by the disulfide bonds in their vicinity. In the molten globule state, the magnitude of the fluorescence signal of W60 and W118 increases, due to the loss of rigid, specific side chain packing. In contrast, the magnitude of the signal of W104 decreases in the molten globule state, perhaps due to the protonation of H107 or quenching by D102 or K108. The solvent accessibilities of individual tryptophan residues were investigated by their fluorescence emission maximum and by acrylamide quenching studies. In the native state, the order of solvent accessibility is as follows: W118 > W60 > W104. This order changes to W60 > W104 > W118 in the molten globule state. Remarkably, the solvent accessibility of W118 in the alpha-LA molten globule is lower than that in the native state. The dynamic properties of the three tryptophan residues were examined by time-resolved fluorescence anisotropy decay studies. The overall rotation of the molecule can be observed in both the native and molten globule states. In the molten globule state, there is an increase in the extent of local backbone fluctuations with respect to the native state. However, the fluctuation is not sufficient to result in complete motional averaging. The three tryptophan residues in the native and molten globule states have different degrees of motional freedom, reflecting the folding pattern and dynamic heterogeneity of these states. Taken together, these studies provide new insight into the structure and dynamics of the alpha-LA molten globule, which serves as a prototype for partially folded proteins.  相似文献   

12.
The molten globule state of alpha-lactalbumin has ordered secondary structure in the alpha-domain, which comprises residues 1 to 34 and 86 to 123. In order to investigate which part of a polypeptide is important for stabilizing the molten globule state of alpha-lactalbumin, we have produced and studied three chimeric proteins of bovine and human alpha-lactalbumin. The stability of the molten globule state formed by domain-exchanged alpha-lactalbumin, in which the amino acid sequence in the alpha-domain comes from human alpha-lactalbumin and that in the beta-domain comes from bovine alpha-lactalbumin, is the same as that of human alpha-lactalbumin and is substantially greater than that of bovine alpha-lactalbumin. Therefore, our results show that the stability of the molten globule state of alpha-lactalbumin is determined by the alpha-domain and the beta-domain is not important for stabilizing the molten globule state. The substitution of residues 1 to 34 of bovine alpha-lactalbumin with those of human alpha-lactalbumin substantially increases the stability of the molten globule state, while the substitution of residues 86 to 123 of bovine alpha-lactalbumin with those of human alpha-lactalbumin decreases the stability of the molten globule state. Therefore, residues 1 to 34 in human alpha-lactalbumin is more important for the stability of the human alpha-lactalbumin molten globule state than residues 86 to 123. The stabilization of the molten globule state due to substitution of both residues 1 to 34 and 86 to 123 is not identical with the sum of the two individual substitutions, demonstrating the non-additivity of the stabilization of the molten globule state. This result indicates that there is a long-range interaction between residues 1 to 34 and 86 to 123 in the molten globule state of human alpha-lactalbumin. The differences in the stabilities of the molten globule states are well correlated with the averaged helical propensity values in the alpha-domain when the long-range interactions are negligible, suggesting that the local interaction is the dominant term for determining the stability of the molten globule state. Our results also indicate that the apparent cooperativity is closely linked to the stability of the molten globule state, even if the molten globule state is weakly cooperative.  相似文献   

13.
During folding of globular proteins, the molten globule state was observed as an equilibrium intermediate under mildly denaturing conditions as well as a transient intermediate in kinetic refolding experiments. While the high compactness of the equilibrium intermediate of alpha-lactalbumin has been verified, direct measurements of the compactness of the kinetic intermediate have not been reported until now. Our dynamic light scattering measurements provide a complete set of the hydrodynamic dimensions of bovine alpha-lactalbumin in different conformational states, particularly in the kinetic molten globule state. The Stokes radii for the native, kinetic molten globule, equilibrium molten globule, and unfolded states are 1.91, 1.99, 2.08, and 2.46 nm, respectively. Therefore, the kinetic intermediate appears to be even more compact than its equilibrium counterpart. Remarkable differences in the concentration dependence of the Stokes radius exist revealing strong attractive but repulsive intermolecular interactions in the kinetic and equilibrium molten globule states, respectively. This underlines the importance of extrapolation to zero protein concentration in measurements of the molecular compactness.  相似文献   

14.
Chang J  Bulychev A  Li L 《FEBS letters》2000,487(2):298-300
A predominant conformational isomer of non-native alpha-lactalbumin (alpha-LA) has been purified by thermal denaturation of the native alpha-LA using the technique of disulfide scrambling. This unique isomer retains a substantial content of alpha-helical structure. It is stabilized by two native disulfide bonds within the alpha-helical domain and two scrambled non-native disulfide bonds at the beta-sheet domain. This denatured isomer of alpha-LA exhibits structural characteristics that are consistent with the well-documented molten globule state. The ability to prepare a stabilized and structurally defined molten globule provides a useful model for studying the folding and unfolding pathways of proteins.  相似文献   

15.
The N-terminal half of the alpha-domain (residues 1 to 34) is more important for the stability of the acid-induced molten globule state of alpha-lactalbumin than the C-terminal half (residues 86 to 123). The refolding and unfolding kinetics of a chimera, in which the amino acid sequence of residues 1 to 34 was from human alpha-lactalbumin and the remainder of the sequence from bovine alpha-lactalbumin, were studied by stopped-flow tryptophan fluorescence spectroscopy. The chimeric protein refolded and unfolded substantially faster than bovine alpha-lactalbumin. The stability of the molten globule state formed by the chimera was greater than that of bovine alpha-lactalbumin, and the hydrophobic surface area buried inside of the molecule in the molten globule state was increased by the substitution of residues 1 to 34. Peptide fragments corresponding to the A- and B-helix of the chimera showed higher helix propensity than those of the bovine protein, indicating the contribution of local interactions to the high stability of the molten globule state of the chimera. Moreover, the substitution of residues 1-34 decreased the free energy level of the transition state and increased hydrophobic surface area buried inside of the molecule in the transition state. Our results indicate that local interactions as well as hydrophobic interactions formed in the molten globule state are important in guiding the subsequent structural formation of alpha-lactalbumin.  相似文献   

16.
Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R(2), is needed for accurate characterization of dynamics, the uncertainty in the R(2) value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the (15)N CPMG R(2). Our simulations show that R(2) can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R(2) caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of (15)N transverse relaxation rates in the both CPMG experiments.  相似文献   

17.
The molten globule state of equine lysozyme is more stable than that of alpha-lactalbumin and is stabilized by non-specific hydrophobic interactions and native-like hydrophobic interactions. We constructed a chimeric protein which is produced by replacing the flexible loop (residues 105-110) in human alpha-lactalbumin with the helix D (residues 109-114) in equine lysozyme to investigate the possible role of the helix D for the high stability and native-like packing interaction in the molten globule state of equine lysozyme. The stability of the molten globule state formed by the chimeric protein to guanidine hydrochloride-induced unfolding is the same as that of equine lysozyme and is substantially greater than that of human alpha-lactalbumin, although only six residues come from equine lysozyme. Our results also suggest that the non-native interaction in the molten globule state of alpha-lactalbumin changes to the native-like packing interaction due to helix substitution. The solvent-accessibility of the Trp residues in the molten globule state of the chimeric protein is similar to that in the molten globule state of equine lysozyme in which packing interaction around the Trp residues in the native state is partially preserved. Therefore, the helix D in equine lysozyme is one of the contributing factors to the high stability and native-like packing interaction in the molten globule state of equine lysozyme. Our results indicate that the native-like packing interaction can stabilize the rudimentary intermediate which is stabilized by the non-specific hydrophobic interactions.  相似文献   

18.
The contributions of backbone NH group dynamics to the conformational heat capacity of the B1 domain of Streptococcal protein G have been estimated from the temperature dependence of 15N NMR-derived order parameters. Longitudinal (R1) and transverse (R2) relaxation rates, transverse cross-relaxation rates (eta(xy)), and steady state [1H]-15N nuclear Overhauser effects were measured at temperatures of 0, 10, 20, 30, 40, and 50 degrees C for 89-100% of the backbone secondary amide nitrogen nuclei in the B1 domain. The ratio R2/eta(xy) was used to identify nuclei for which conformational exchange makes a significant contribution to R2. Relaxation data were fit to the extended model-free dynamics formalism, incorporating an axially symmetric molecular rotational diffusion tensor. The temperature dependence of the order parameter (S2) was used to calculate the contribution of each NH group to conformational heat capacity (Cp) and a characteristic temperature (T*), representing the density of conformational energy states accessible to each NH group. The heat capacities of the secondary structure regions of the B1 domain are significantly higher than those of comparable regions of other proteins, whereas the heat capacities of less structured regions are similar to those in other proteins. The higher local heat capacities are estimated to contribute up to approximately 0.8 kJ/mol K to the total heat capacity of the B1 domain, without which the denaturation temperature would be approximately 9 degrees C lower (78 degrees C rather than 87 degrees C). Thus, variation of backbone conformational heat capacity of native proteins may be a novel mechanism that contributes to high temperature stabilization of proteins.  相似文献   

19.
We examined the internal mobility of the estrogen receptor DNA-binding domain (ER DBD) using NMR15N relaxation measurements and compared it to that of the glucocorticoid receptor DNA-binding domain (GR DBD). The studied protein fragments consist of residues Arg183-His267 of the human ER and residues Lys438-Gln520 of the rat GR. The15N longitudinal (R1) and transverse (R2) relaxation rates and steady state {1H}-15N nuclear Overhauser enhancements (NOEs) were measured at 30 degrees C at1H NMR frequencies of 500 and 600 MHz. The NOE versus sequence profile and calculated order parameters for ER DBD backbone motions indicate enhanced internal dynamics on pico- to nanosecond time-scales in two regions of the core DBD. These are the extended strand which links the DNA recognition helix to the second zinc domain and the larger loop region of the second zinc domain. The mobility of the corresponding regions of the GR DBD, in particular that of the second zinc domain, is more limited. In addition, we find large differences between the ER and GR DBDs in the extent of conformational exchange mobility on micro- to millisecond time-scales. Based on measurements of R2as a function of the15N refocusing (CPMG) delay and quantitative (Lipari-Szabo-type) analysis, we conclude that conformational exchange occurs in the loop of the first zinc domain and throughout most of the second zinc domain of the ER DBD. The conformational exchange dynamics in GR DBD is less extensive and localized to two sites in the second zinc domain. The different dynamical features seen in the two proteins is consistent with previous studies of the free state structures in which the second zinc domain in the ER DBD was concluded to be disordered whereas the corresponding region of the GR DBD adopts a stable fold. Moreover, the regions of the ER DBD that undergo conformational dynamics on the micro- to millisecond time-scales in the free state are involved in intermolecular protein-DNA and protein-protein interactions in the dimeric bound state. Based on the present data and the previously published dynamical and DNA binding properties of a GR DBD triple mutant which recognize an ER binding site on DNA, we argue that the free state dynamical properties of the nuclear receptor DBDs is an important element in molecular recognition upon DNA binding.  相似文献   

20.
Molecular dynamics simulations are used to probe the properties of non-native states of the protein human alpha-lactalbumin (human alpha-LA) with a detailed atomistic model in an implicit aqueous solvent environment. To sample the conformational space, a biasing force is introduced that increases the radius of gyration relative to the native state and generates a large number of low-energy conformers that differ in terms of their root-mean-square deviation, for a given radius of gyration. The resulting structures are relaxed by unbiased simulations and used as models of the molten globule and partly denatured states of human alpha-LA, based on measured radii of gyration obtained from nuclear magnetic resonance experiments. The ensembles of structures agree in their overall properties with experimental data available for the human alpha-LA molten globule and its more denatured states. In particular, the simulation results show that the native-like fold of the alpha-domain is preserved in the molten globule. Further, a considerable proportion of the antiparallel beta-strand in the beta-domain are present. This indicates that the lack of hydrogen exchange protection found experimentally for the beta-domain is due to rearrangement of the beta-sheet involving transient populations of non-native beta-structures. The simulations also provide details concerning the ensemble of structures that contribute as the molten globule unfolds and shows, in accord with experimental data, that unfolding is not cooperative; i.e. the various structural elements do not unfold simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号