首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
以盐单胞菌S62 β-半乳糖苷酶为研究对象,探究其合成低聚半乳糖效率。为了提高低聚半乳糖产率,对反应条件进行了优化,并以反应温度、pH、加酶量、底物浓度为考察对象进行正交试验,得到最优反应条件:反应温度40℃,pH 7.0,加酶量50 U/mL,底物质量浓度300 g/L。反应6 h时可获得最大低聚半乳糖产率(41.91±0.27)%,乳糖消耗率为(82.47±0.38)%。反应4~8 h内低聚半乳糖产率都维持在40%以上,此时乳糖消耗率均在80%以上,在提高乳糖利用率的同时实现了低聚半乳糖的高产,有利于降低生产成本,为低温S62 β-半乳糖苷酶工业化应用奠定了基础。  相似文献   

2.
采用人工底物邻硝基苯酚-β-D-半乳糖苷(o NPG)为筛选标记,从耐有机溶剂微生物菌库中,筛选出具有较高水解活性的β-半乳糖苷酶产生菌,再以乳糖为底物考察菌株低聚半乳糖的合成性能,筛选得到1株产β-半乳糖苷酶的Erwinia billingiae WX1。根据Gen Bank中相同属种的基因组序列推测β-半乳糖苷酶基因,克隆得到β-半乳糖苷酶基因gal,并在大肠杆菌中实现了来源于Erwinia billingiae菌β-半乳糖苷酶的克隆表达。该基因的开放阅读框(ORF)为1 428 bp,编码475个氨基酸,理论相对分子质量为5.2×104。镍柱法分离纯化得到电泳纯的β-半乳糖苷酶GAL,其酶学性质研究表明最适催化温度55℃,最适p H 7.0;Mg~(2+)、Mn~(2+)对该酶起较强促进作用,EDTA对该酶抑制作用较强。利用β-半乳糖苷酶GAL的转糖基作用,以乳糖为底物合成低聚半乳糖,初步优化的反应条件:底物乳糖质量浓度400 g/L,每克乳糖添加酶量1.0 U,在40℃反应16 h后,低聚半乳糖合成率达到34%(质量分数),显示了较好的开发前景。  相似文献   

3.
从土壤中筛选获得一株具有转糖基活性的β-半乳糖苷酶产生菌,综合其形态学特征、生理生化特征及16S rDNA序列同源分析结果,将其鉴定为成团肠杆菌(Enterobacter agglomerans)B1.通过单因子试验和正交试验,对B1菌株产转糖基β-半乳糖苷酶的培养条件进行了优化.最佳培养基主要组份为:乳糖1%,酵母粉1%,蛋白胨0.5%;发酵条件为:初始pH7.5,发酵温度25℃,发酵时间26 h.在该培养条件下产酶量为9.7U/mL.利用薄层层析技术研究了pH、温度、底物浓度和反应时间对该菌株全细胞以乳糖为底物生成低聚半乳糖的影响,确定最适反应条件为:pH7.5缓冲液配制的30%乳糖溶液;50℃反应12h.最优化反应的转糖基产物经HPLC、TLC和MS分析,确定低聚半乳糖产量为40.7%,组分为转移二糖、三糖和四糖.  相似文献   

4.
以树脂为载体研究β-半乳糖苷酶固定化条件,来改善酶性质。以吸附率和回收率最高的离子交换树脂I002为载体,通过先吸附后交联的方法固定β-半乳糖苷酶,优化固定化条件。结果表明:加酶量为51.8 U(以1 g树脂计),固定p H为6.5,温度是25℃,吸附时间12 h,戊二醛体积分数为4%,交联温度是40℃,时间是6 h时,固定化效果最好。获得的固定化酶活可达16.2 U,固定酶回收率为39.1%,得到低聚半乳糖(GOS)的产率为24.2%。该研究为工业化利用固定化乳糖酶连续生产低聚半乳糖提供了技术依据。  相似文献   

5.
碳源对K.fragilis LFS-8611β-D-半乳糖苷酶合成的影响   总被引:1,自引:0,他引:1  
探讨了碳源对脆壁克鲁维酵母(Kluyveromyces fragilis)LFS-8611生长、β-D-半乳糖苷酶合成的影响及碳源对该酶合成的诱导作用。脆壁克鲁维酵母(K,fragilis)LFS-8611生长与β-D-半乳糖苷酶合成同步。该菌株生长和产酶的最适碳源为半乳糖,乳糖次之。菌体生物量和酶活力随着培养基中乳糖浓度的增加而增加,乳糖浓度为12mg/mL,菌体生物量和酶活力达到峰值,分别为5.84g/L、19,12U/mL。半乳糖和乳糖对β-D-半乳糖苷酶合成具有诱导作用。诱导物浓度对β-D-半乳糖苷酶的诱导合成有较大影响。半乳糖诱导以山梨醇为碳源预培养的K.fragilis LFS-8611细胞合成β-D-半乳糖苷酶的最适浓度为10mg/mL。  相似文献   

6.
固定化嗜热脂肪芽孢杆菌连续合成半乳糖寡糖的研究   总被引:2,自引:0,他引:2  
利用固定了产β-半乳糖苷酶的嗜热脂肪芽孢杆菌,以乳糖为底物,在纤维床反应器中连续合成半乳糖寡糖(GOS),最高得率为50.7%。在连续反应体系中,研究了底物浓度、pH、反应温度和停留时间对半乳糖寡糖合成的影响,确定最佳反应条件为底物浓度450 g/L、反应温度55℃、pH7.0、停留时间100 min。在连续反应24h后,流加1.5%的D-半乳糖能提高合成GOS的能力,固定化细胞反应体系中连续稳定操作120 h。  相似文献   

7.
【背景】β-半乳糖苷酶转糖苷活性弱,产物低聚半乳糖(galactooligosaccharides, GOS)易被水解,致其催化得率普遍较低。【目的】以GH42家族Geobacillus stearothermophilus来源β-半乳糖苷酶BgaB为对象,探讨家族保守氨基酸位点突变对β-半乳糖苷酶BgaB催化活性的影响。【方法】在单点突变体功能研究基础上,采用定点突变与化学修饰相结合的方法,对保守氨基酸位点E303与F341进行累积突变。【结果】与野生型酶相比,所构建双点突变体Ox-E303C/F341S水解活性降低为30%;GOS最大得率由0.75%提高到19.50%。【结论】家族保守氨基酸位点累积突变能够使单点突变体功能得到共同进化,降低β-半乳糖苷酶水解活性和底物抑制作用,能够提高其转糖苷催化活性。  相似文献   

8.
β-糖苷酶(ttβGLY)是Thermus thermophilus产生的一种耐高温酶,以乳糖为底物的酶反应研究表明:该酶具有较高的乳糖水解活性,其最适温度为70℃,最适pH为7.0,乳糖水解的Km=1.566mmol/L,Vmax=0.406mmol/min,在70℃有较好的热稳定性。该酶同时具有较强的转糖基活性,在以40%乳糖为底物,加酶量42.5U/mL、反应温度70℃、反应时间16h的条件下,低聚半乳糖的合成率达到35.3%。水解产物葡萄糖对乳糖水解反应和转糖基反应具有抑制作用,是影响GOS合成的重要因素。  相似文献   

9.
【目的】对滇金丝猴粪便微生物来源的β-半乳糖苷酶进行异源表达和纯化,并研究其酶学性质。【方法】从滇金丝猴粪便微生物的宏基因组中克隆出一个β-半乳糖苷酶基因galRBM20_1,对该基因进行异源表达和酶学性质分析。构建含有T7强启动子的pEASY-E2-galRBM20_1质粒,转化至大肠杆菌BL21(DE3),经IPTG诱导表达后进行酶学性质研究。【结果】滇金丝猴粪便来源的β-半乳糖苷酶(galRBM20_1)最适pH为5.0,在pH 4–7之间能保留70%及其以上的活性。最适温度为45°C,在37°C和45°C下耐受1 h,酶活不变。特别的是,该酶具有良好的Na Cl稳定性,经1–5 mol/L的Na Cl作用1 h后,相对酶活均能超过初始酶活:当NaCl的作用浓度为4 mol/L时,β-半乳糖苷酶相对酶活最高(146%);当NaCl的作用浓度为5mol/L时,β-半乳糖苷酶的相对酶活仍达到135%。【结论】本研究从滇金丝猴粪便微生物的宏基因库中克隆得到β-半乳糖苷酶基因galRBM20_1,并成功在大肠杆菌BL21(DE3)表达,首次从动物胃肠道宏基因组中获得具有耐盐和转糖基产Galactooligosaccharides(GOS)性能的β-半乳糖苷酶。该酶具有良好的耐盐性,和较广的pH作用范围,使其在食品、生物技术领域和环保方面的发展具有良好的应用价值。  相似文献   

10.
【背景】低温β-半乳糖苷酶能在低温下仍保持较高的乳糖水解活性,筛选酶学特性适合在牛乳体系中高效水解乳糖的β-半乳糖苷酶生产菌株,是低乳糖牛乳加工产业关注的焦点。【目的】对天山中国一号冰川沉积物中分离的一株产低温β-半乳糖苷酶菌株的产酶条件和酶学特性进行研究。【方法】结合X-Gal平板法初筛和测定粗酶液酶活复筛,获得产低温β-半乳糖苷酶的菌株。通过形态学、生理生化试验及16S rRNA基因测序分析对筛选菌株进行鉴定,单因素摇瓶实验优化菌株的产酶条件,硫酸铵分级沉淀初步纯化β-半乳糖苷酶并对其酶学特性进行分析。【结果】通过形态学、生理生化特征和16S rRNA基因鉴定,确定菌株LW106为微杆菌属(Microbacterium)菌株;该菌株最适产酶温度为25°C,最佳产酶碳源为可溶性淀粉,培养基初始pH为7.0,接种量为3%;对初步纯化的低温β-半乳糖苷酶酶学性质的研究表明,LW106所产β-半乳糖苷酶的最适pH为6.0,最适反应温度为35°C,4°C时酶活为最大酶活的78%,4°C和pH 7.0时的稳定性最好,10 mmol/L的Na+对酶活性基本没有抑制作用,Ca~(2+)对酶活性具有一定的激活作用。【结论】菌株LW106所产低温β-半乳糖苷酶的酶学特性表明该酶在乳品低温加工领域具有进一步研究和应用的价值。  相似文献   

11.
测定了43种碳水化合物对酶活力的影啊。其中半乳糖、甘油醛及纤维二糖使酶活力下降50%以上,D-阿拉伯糖、塔格糖、半乳糖醛酸、D-枝糖、L-阿拉伯糖、D-葡萄糖酸内酯.乳糖及蔗糖使酶活下降到70%左右;而二羟丙酮、2-脱氧-D-半乳糖及异丙基β-D-硫代半乳糖苷使酶话提高50%左右;其余的碳水化合物对酶活无明显影响。测定了Hg2+、甘油醛及半乳糖对酶的抑制类型。结果表明,Hg2+是a-半乳糖苷酶的非竞争性抑制剂,半乳糖及甘油醛是酶的竞争性抑制剂,后两者的K,值分别为8.3及12.5 mmol/L。  相似文献   

12.
【背景】β-半乳糖苷酶在食品加工、临床医疗及基因工程等领域有重要的应用价值,开发酶活性高、热稳定性强的β-半乳糖苷酶已成为研究热点。【目的】从西黑冠长臂猿(Nomascus concolor)粪便微生物宏基因组中挖掘新型β-半乳糖苷酶并进行酶学性质研究。【方法】以西黑冠长臂猿粪便微生物宏基因组DNA为模板扩增β-半乳糖苷酶基因GalNC1-8,构建重组表达质粒pEASY-E2/GalNC1-8,转化至大肠杆菌(Escherichia coli) BL21(DE3)异源表达,研究其酶学性质。【结果】获得GH35家族碱性β-半乳糖苷酶GalNC1-8,其分子量为28.18 kDa,最适温度为50°C,最适pH为8.0。将该酶在30-50°C下处理1 h,剩余酶活仍保持在80%以上;pH 7.0-9.0下处理1 h,剩余酶活大于54%。在含乙醇的反应体系中,其酶活性几乎不受影响;β-巯基乙醇、丙三醇、甲醇、Na+、K+和Li+对其酶活性有促进作用。在0.5-3.5 mol/L NaCl下处理1 h后,仍保留50%以上的酶活性。...  相似文献   

13.
目的从云南豆豉样品中筛选产β-半乳糖苷酶的乳酸菌,并对其产酶条件进行研究。方法从云南省元阳、红河、建水、石屏等地采集豆豉样品,并从中分离得到355株微生物。结果经明胶诱导、脱脂乳平板实验,复筛得到87株蛋白酶产生菌,从中筛选产β-半乳糖苷酶的乳酸菌。通过X-Gal平板实验,共获得34株产β-半乳糖苷酶菌株,通过酶活测定,最终筛选得到1株高产β-半乳糖苷酶菌株GJ-1-3L,经16S rDNA序列分析鉴定为短乳杆菌;GJ-1-3L在以葡萄糖为碳源、多聚蛋白胨为氮源、起始pH 6.5的MRS培养基中,接种量为4%,35℃发酵培养12 h,其β-半乳糖苷酶活性高达6.73 U/mL,Cu2+、Ba2+对酶活有抑制作用,而K2HPO4、MgSO4则能促进酶活。结论 GJ-1-3L菌株来源于豆豉,能够产生β-半乳糖苷酶发酵乳糖,同时产生乳酸,其在食品与乳品加工等方面具有很好的应用前景。  相似文献   

14.
用5 L发酵罐优化了重组咖啡豆α-半乳糖苷酶酵母工程菌pPIC9K-Gal/GS115(本室构建)的高密度发酵工艺.通过对发酵条件的优化,包括甘油补充量及补充时机、甲醇诱导量及诱导时机、溶氧控制、诱导时间等,重组咖啡豆α-半乳糖苷酶在毕赤酵母中得到了高效表达.利用所确定的最适条件进行发酵,菌体密度最终达到368 g/L以上,每批发酵液离心后可获得3.5 L的发酵上清,上清中的蛋白含量达到3 g/L以上,目的蛋白占上清总蛋白的50%以上,含量约为1.5 g/L,上清中α-半乳糖苷酶的活性维持在80 U/ml左右.确立工艺后又进行了3次发酵试验,证明了工艺的可行性和稳定性.为重组咖啡豆α-半乳糖苷酶在B→O血型改造和酶解大豆低聚糖方面的应用奠定了基础.  相似文献   

15.
王剑锋  王璋  李江  饶军 《菌物学报》2012,31(2):251-257
根霉Rhizopus sp. A01发酵豆渣产α-半乳糖苷酶,粗酶液依次经过三相分离、Sephadex G-100凝胶过滤获得了电泳纯的α-半乳糖苷酶,纯化了6.7倍,总酶活回收率达到46%;凝胶过滤和SDS-PAGE显示该酶为相对分子质量为87.6kDa的单体蛋白。该酶水解对硝基苯-α-D-吡喃半乳糖苷的最适pH值为5.0,最适温度为55℃,表观Km、kcat/Km分别为2.56mmol/L、47,400L/mol·s;能微弱水解蜜二糖和棉子糖,水解蜜二糖的速率是水解棉子糖速率的3.4倍;水解活性受多种  相似文献   

16.
低聚半乳糖(GOS)是目前国际上已开发的功能性低聚糖之一,其商业化产品是应用微生物β-半乳糖苷酶以乳糖为原料进行转糖基反应获得,不同来源的酶合成GOS的结构不同,转糖基效率也存在差异.天然酶合成GOS的产量一般为20%~45%,分子改造获得的人工酶能将90%的乳糖底物转化为GOS;采用两相体系或反相胶束可以在一定程度上提高GOS产量.应用填充床反应器、活塞流反应器、膜反应器可规模化合成GOS;采用色谱柱法、酶法、纳滤膜法和微生物发酵法可纯化GOS产品,去除单糖及乳糖组分,扩大其应用范围.  相似文献   

17.
[目的]实现耐热α-半乳糖苷酶在毕赤酵母中的高效表达,并初步研究其酶学性质。[方法]克隆来源于埃默森篮状菌(Talaromyces emersonii)的α-半乳糖苷酶基因TEgal,构建p AO815-TEgal重组表达载体,采用DNS法测定其水解活性及酶学性质;通过薄层层析研究其水解底物谱;并构建TEgal基因多拷贝表达框,实现了该基因的高效表达。[结果]TEgal对棉籽糖水解活性最高9. 5 U/m L,最适温度75℃,最适pH值3. 5; Na~+、K~+对TEgal有促进作用,Mg~(2+)、Co~(2+)、Mn~(2+)、Ca~(2+)、Fe~(2+)、Zn~(2+)均能抑制酶活,多拷贝重组表达菌株活性最高为22. 4 U/m L。[结论]成功构建耐热α-半乳糖苷酶高效表达菌株,通过提升基因剂量将酶活和蛋白含量提高了135%和356%。  相似文献   

18.
从丝状真菌中筛选到一株产α-半乳糖苷酶的菌株F63,对该菌株进行了形态观察和18SrDNA序列分析,该菌株属于青霉属。采用硫酸铵沉淀、阴离子交换层析和分子筛层析等方法分离纯化了该菌株的一种α-半乳糖苷酶。经过聚丙烯酰胺凝胶电泳,此酶蛋白的分子量约为82kDa。该α-半乳糖苷酶反应的最适pH为5.0,最适温度为45℃。此α-半乳糖苷酶的热稳定性在40℃以下,pH稳定性为pH5.0-6.0。与已报道的α-半乳糖苷酶的活性都受到Ag 的强烈抑制不同的是,该α-半乳糖苷酶受Ag 的抑制作用不显著。以pNPG为底物的Km值为1.4mmol/L和Vmax=1.556mmol/L.min-1.mg-1。该酶可以有效降解蜜二糖、棉子糖和水苏糖,但不能降解末端含α-半乳糖苷键的多糖。通过利用质谱技术对纯化的α-半乳糖苷酶进行鉴定以及内肽的N端测序证明该蛋白为一种新的α-半乳糖苷酶。  相似文献   

19.
【目的】克隆高原唯一珍惜鹤类——黑颈鹤粪便分离菌Arthrobacter sp.GN14的α-半乳糖苷酶基因agaAGN14,并对该酶进行序列分析、系统发育分析和重组酶的酶学特性分析。【方法】利用简并PCR和GCTAIL-PCR方法获得agaAGN14全长,并对其氨基酸序列(AgaAGN14)进行比对和neighbor-joining系统发育树的构建。将agaAGN14重组到载体pET-28a(+)中并转化到Escherichia coli BL21(DE3)中异源表达。利用组氨酸标签纯化重组α-半乳糖苷酶rAgaAGN14并进行酶学性质分析。【结果】agaAGN14全长2109 bp,GC含量66.8%,编码702个氨基酸(77.5 kDa)。AgaAGN14与数据库中序列的最高一致性为53.7%,与其余胃肠道环境α-半乳糖苷酶的一致性<43%。系统发育分析将AgaAGN14聚于具有催化域KWD和SDXXDXXXR的α-半乳糖苷酶分支,与土壤微生物来源α-半乳糖苷酶距离相对较近,而与其余胃肠道环境α-半乳糖苷酶距离相对较远。rAgaAGN14可水解pNPG、棉籽糖、密二糖、水苏糖、菜粕和棉籽粕,表观最适pH为6.5,在pH 6.0-pH 9.0的范围内稳定并维持50%以上的酶活性。rAgaAGN14的表观最适温度为45℃,在10℃、20℃和37℃内稳定并分别具有约28%、30%和80%的酶活。在45℃pH 6.5条件下,rAgaAGN14对pNPG的Km、Vmax和kcat分别为0.41 mmol/L、18.28μmol/min/mg和25.36 s-1。rAgaAGN14受Ag+、Hg2+及SDS抑制,受K+、Ca2+、Mn2+、Fe3+、Ni2+、Cu2+和β-mercaptoethanol部分抑制,受Co2+、Pb2+、Zn2+、Mg2+、Na+和EDTA的影响较小。【结论】首次报道从黑颈鹤粪便中分离到Arthrobacter菌,并对该属细菌α-半乳糖苷酶进行序列分析、系统发育分析、异源表达和重组酶的酶学特性分析。rAgaAGN14序列较新颖,其酶学特性可能是同时适应黑颈鹤肠道环境和高原淡水湿地环境的结果。  相似文献   

20.
重组β-葡萄糖苷酶生产龙胆低聚糖的工艺条件优化   总被引:3,自引:0,他引:3  
刘玲玲  朱松  朱婷  张敏  吴敬  陈坚 《微生物学报》2009,49(5):597-602
摘要:【目的】β-葡萄糖苷酶可用于酶法生产龙胆低聚糖。为了给龙胆低聚糖的生产提供大 量的酶来源,构建基因工程菌表达黑曲霉(CMI CC 324626)β-葡萄糖苷酶基因(bgl)并研究重组酶生产龙胆低聚糖的工艺条件。【方法】将bgl克隆到表达载体pPIC9K,转化毕赤酵母(Pichia pastoris)KM71。表达产物通过HPLC和LC-MS鉴定了其可用于生产龙胆低聚糖的转苷活性,并对酶转化葡萄糖生产龙胆低聚糖的反应条件进行了优化。【结果】实现了β-葡萄糖苷酶的过量表达。当底物葡萄糖浓度为80%,反应pH4.5,温度为60℃,加酶量为每克葡萄糖60 U,添加1 mmol/L的K+,转化周期为48 h,龙胆低聚糖累计达到最大为50 g/L。【结论】本研究是国内外首次利用重组酶酶法生产龙胆低聚糖的报道。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号