首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In arctic charr Salvelinus alpinus, arterial blood partial pressures of oxygen (PaO2) and carbon dioxide increased with increasing water oxygen tension (PwO2), while the water to arterial PO2 difference (PwO2-PaO2) did not change in relation to PwO2.  相似文献   

2.
Gray gulls, Larus modestus, nest 1500 m above sea level in northern Chile's Atacama Desert, one of the driest in the world. Their eggshell gas permeability, one third of that found in other Larus species, is an adaptation that reduces water loss, but at the expense of oxygen diffusion into the air cell with resultant hypoxia and reduced metabolic rate. This contrasts with characteristics found in birds nesting at very high altitudes where oxygen diffusion across the egg shell is maximized at the expense of water conservation. The oxygen consumption (MO2) of Larus modestus is 66% that of Larus argentatus; the oxygen conductance (GO2) is equivalent to 48% of that obtained in 5 other bird species. The oxygen partial pressure (PAO2) in the air chamber of Larus modestus (84 Torr) is lower than that of 10 other bird species whose average (PAO2) is 106 Torr. The CO2 partial pressure (PACO2) in the air chamber of Larus modestus is 68 Torr, a higher value than that found in 9 other bird species whose average (PACO2) is 39 Torr.  相似文献   

3.
In the present study, chronic behavioural stress resulting from low social status affected the physiological responses of rainbow trout (Oncorhynchus mykiss) to a subsequent acute stressor, exposure to hypoxia. Rainbow trout were confined in fork-length matched pairs for 48-72?h, and social rank was assigned based on behaviour. Dominant and subordinate fish were then exposed individually to graded hypoxia (final water PO(2), PwO(2)?=?40?Torr). Catecholamine mobilization profiles differed between dominant and subordinate fish. Whereas dominant fish exhibited generally low circulating catecholamine levels until a distinct threshold for release was reached (PwO(2)?=?51.5?Torr corresponding to arterial PO(2), PaO(2)?=?24.1?Torr), plasma catecholamine concentrations in subordinate fish were more variable and identification of a distinct threshold for release was problematic. Among fish that mobilized catecholamines (i.e. circulating catecholamines rose above the 95% confidence interval around the baseline value), however, the circulating levels achieved in subordinate fish were significantly higher (459.9?±?142.2?nmol?L(-1), mean?±?SEM, N?=?12) than those in dominant fish (130.9?±?37.9?nmol?L(-1), N?=?12). The differences in catecholamine mobilization occurred despite similar P(50) values in dominant (22.0?±?1.5?Torr, N?=?6) and subordinate (22.1?±?2.2?Torr, N?=?8) fish, and higher PaO(2) values in subordinate fish under severely hypoxic conditions (i.e. PwO(2)?相似文献   

4.
O2 microelectrode measurements were made in the cat carotid body (CB) at normal control blood pressures (C) and after hemorrhage (H) to reduce mean arterial blood pressure [C, 98.7 +/- 4.6 (SE) mmHg; H, 58.1 +/- 1.8; P less than 0.001; paired t test; n = 9 cats]. Mean tissue PO2 (PtiO2) was significantly lower (C, 78.4 +/- 3.0 Torr; H, 65.3 +/- 4.8; P less than 0.01). Except for two experiments with good autoregulation, the decrease in PtiO2 correlated with the reduction in blood pressure (r = 0.791, P less than 0.005). Measurements of O2 disappearance curves (DCs) and sinus nerve discharge (ND) were obtained after blood supply was occluded for 30-45 s (56 C DCs, 44 H DCs). Disappearance rates (dPO2/dt) were significantly slower after hemorrhage (C, -7.52 +/- 0.47 Torr/s; H, -6.60 +/- 0.44; P less than 0.01), decreasing by 0.656 Torr/s for each 10 Torr fall in PtiO2 (r = 0.626, P less than 0.05). Resting ND before occlusion increased during hypotension (11.6 +/- 2.9% of control, P less than 0.01) and correlated with the decrease in PtiO2 (r = -0.792, P less than 0.005). A computer simulation was performed for a two-cytochrome metabolic model with a second, low-O2-affinity oxidase in addition to normal oxidative metabolism. The effects of cat oxyhemoglobin and blood pH on the O2 DC measurement were also taken into account. The simulation for the two-cytochrome model was consistent with our experimental data and predicts reductions in blood flow and O2 metabolism with hypotension after hemorrhage that have similarities, as well as aspects that disagree, with previous reports in the literature.  相似文献   

5.
Fuel homeostasis in the harbor seal during submerged swimming   总被引:1,自引:0,他引:1  
1. The turnover rates and oxidation rates of plasma glucose, lactate, and free fatty acids (FFA) were measured in three harbor seals (average mass = 40 kg) at rest or during voluntary submerged swimming in a water flume at 35% (1.3 m.s-1) and 50% (2 m.s-1) of maximum oxygen consumption (MO2max). 2. For seals resting in water, the total turnover rates for glucose, lactate, and FFA were 23.2, 26.2, and 7.5 mumols.min-1.kg-1, respectively. Direct oxidation of these metabolites accounted for approximately 7%, 27%, and 33% of their turnover and 3%, 7%, and 18% of the total ATP production, respectively. 3. For swimming seals, MO2max was achieved at a drag load equivalent to a speed of 3 m.s-1 and averaged 1.85 mmol O2.min-1.kg-1, which is 9-fold greater than resting metabolism in water at 18 degrees C. 4. At 35% and 50% MO2max, glucose turnover and oxidation rates did not change from resting levels. Glucose oxidation contributed about 1% of the total ATP production during swimming. 5. At 50% MO2max, lactate turnover and anaerobic ATP production doubled, but the steady state plasma lactate concentration remained low at 1.1 mM. Lactate oxidation increased 63% but still contributed only 4% of the total ATP production. Anaerobic metabolism contributed about 1% of the total ATP production at rest and during swimming. 6. The plasma FFA concentration and turnover rate increased only 24% and 37% over resting levels, respectively, at 50% MO2max. However, the oxidation rate increased almost 3.5-fold and accounted for 85% of the turnover.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Oxygen transport to exercising leg in chronic hypoxia   总被引:4,自引:0,他引:4  
Residence at high altitude could be accompanied by adaptations that alter the mechanisms of O2 delivery to exercising muscle. Seven sea level resident males, aged 22 +/- 1 yr, performed moderate to near-maximal steady-state cycle exercise at sea level in normoxia [inspired PO2 (PIO2) 150 Torr] and acute hypobaric hypoxia (barometric pressure, 445 Torr; PIO2, 83 Torr), and after 18 days' residence on Pikes Peak (4,300 m) while breathing ambient air (PIO2, 86 Torr) and air similar to that at sea level (35% O2, PIO2, 144 Torr). In both hypoxia and normoxia, after acclimatization the femoral arterial-iliac venous O2 content difference, hemoglobin concentration, and arterial O2 content, were higher than before acclimatization, but the venous PO2 (PVO2) was unchanged. Thermodilution leg blood flow was lower but calculated arterial O2 delivery and leg VO2 similar in hypoxia after vs. before acclimatization. Mean arterial pressure (MAP) and total peripheral resistance in hypoxia were greater after, than before, acclimatization. We concluded that acclimatization did not increase O2 delivery but rather maintained delivery via increased arterial oxygenation and decreased leg blood flow. The maintenance of PVO2 and the higher MAP after acclimatization suggested matching of O2 delivery to tissue O2 demands, with vasoconstriction possibly contributing to the decreased flow.  相似文献   

7.
Operation Everest II: muscle energetics during maximal exhaustive exercise   总被引:5,自引:0,他引:5  
To investigate the metabolic basis for the reduction in peak blood lactate concentration that occurs with maximal exercise after acclimatization to altitude, eight male subjects [maximal O2 uptake of 51.2 +/- 3.0 (SE) ml.kg-1.min-1] were acclimated to progressive hypobaria over a 40-day period. Before decompression (SL-1), at 380 and 282 Torr, and on return to sea level (SL-2) the subjects performed progressive cycle exercise to exhaustion. Analysis of muscle samples obtained from the vastus lateralis before exercise and at exhaustion indicated a pronounced reduction (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 282 Torr (39.2 +/- 11) compared with SL-1 (113 +/- 9.7), 380 Torr (94.6 +/- 18), and SL-2 (92.7 +/- 22). For the other glycolytic intermediates studied (glucose 1-phosphate, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, and pyruvate) only the increase in glucose 1-phosphate, glucose 6-phosphate, and fructose 6-phosphate were blunted (P less than 0.05) at 282 Torr. The reduction in muscle glycogen concentration during exercise was similar (P less than 0.05) for all environmental conditions. Although exercise resulted in reductions (P less than 0.05) in ATP and creatine phosphate averaging 30 and 51%, respectively, the magnitude of the change was not dependent on the degree of hypobaria. Inosine monophosphate was elevated (P less than 0.05) approximately 11-fold with exercise at both SL-1 and SL-2. These findings support the hypothesis that the lower lactate concentration observed at 282 Torr after exhaustive exercise is due to a reduction in anaerobic glycolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Oxygen dissociation curves (ODC) in whole blood and organic phosphate concentrations in red cells were determined in 10 highly trained male athletes (TR), 6 semitrained subjects (ST) who played sports regularly at low intensities and 8 untrained people (UT). In all groups standard ODCs (37 degrees C, pH 7.40, PCO2 approximately 43 Torr) at rest and after a short exhaustive exercise were nearly identical, but PO2 values measured immediately after blood sampling and corrected to standard conditions tended to fall to the right of the in vitro ODC. Elevated P50 in the physically active [28.65 +/- 1.4 Torr (3.81 +/- 0.18 kPa) in ST, 28.0 +/- 1.1 Torr (3.73 +/- 0.15 kPa) in TR, but 26.5 +/- 1.1 Torr (3.53 +/- 0.15 kPa) in UT] were partly caused by different [DPG] (11.9 +/- 1.3 mumol/GHb in UT, 13.3 +/- 1.5 mumol/GHb in TR, 13.8 +/- 2.2 mumol/gHb in ST). There were remarkable differences in the shape of the curves between the groups. The slope "n" in the Hill plot amounted to 2.65 +/- 0.12 in UT, 2.74 +/- in ST and 2.90 +/- 0.11 in the TR (2 p against UT less than 0.001), leading to an elevated oxygen pressure of about 2 Torr (0.27 kPa) at 20% saturation and an augmented oxygen extraction of 5--7 SO2 at a PO2 of about 15 Torr (2kPa), which might be favorable at high workloads. The reason for the phenomenon could be an increased amount of young red cells in the blood of TR, caused by exercise induced hemolysis.  相似文献   

9.
This study investigated the relationships between blood pressure, cortical oxygen pressure, and extracellular striatal dopamine in the brain of adult cats during hemorrhagic hypotension and re-transfusion. Oxygen pressure in the blood of the cortex was measured by the oxygen dependent quenching of phosphorescence and extracellular dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132 ± 2 Torr (control) to 90 Torr, 70 Torr and 50 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. As the MAP was lowered there was a decrease in arterial pH, from a control value of 7.37 ± 0.05 to 7.26 ± 0.06. The PaCO2 decreased during bleeding from 32.3 ± 4.8 Torr to 19.6 ± 3.6 Torr and returned to 30.9 ± 3.9 Torr after retransfusion. The PaO2 was 125.9 ± 15 Torr during control conditions and did not significantly change during bleeding. Cortical oxygen pressure decreased with decrease in MAP, from 50 ± 2 Torr (control) to 42 ± 1 Torr, 31 ± 2 Torr and 22 ± 2 Torr, respectively. A statistically significant increase in striatal extracellular dopamine, to 2,580 ± 714% of control was observed when MAP decreased to below 70 Torr and cortical oxygen pressure decreased to below 31 Torr. When the MAP reached 50 Torr, the concentration of extracellular dopamine increased to 18,359 ± 2,764% of the control value. A statistically significant decrease in DOPAC and HVA were observed during the last step of bleeding. The data show that decreases in systemic blood pressure result in decrease in oxygen pressure in the microvasculature of the cortex, suggesting vascular dilation is not sufficient to result in a full compensation for the decreased MAP. The decrease in cortical oxygen pressure to below 32 Torr is accompanied by a marked increase in extracellular dopamine in the striatum, indicating that even such mild hypoxia can induce significant disturbance in brain metabolism.  相似文献   

10.
O2 microelectrode studies were conducted in the cat carotid body (CB) to investigate the hypothesis that there is a second, low affinity metabolic pathway for O2 in addition to classical oxidative metabolism. Tissue PO2 (PtiO2) and O2 disappearance rates (dPO2/dt) after brief blood flow occlusion were measured with recessed cathode microelectrodes (tip diameter less than 5 microns) at 150 sites in 15 normal cats (controls) and at 154 sites in 5 cats in which one CB had been denervated 2 or 3 days before the experiments. Mean PtiO2 was slightly higher in denervated CBs: 79.6 +/- 1.6 (SE) Torr compared with 76.4 +/- 2.0 Torr for controls (P = not significant). Mean dPO2/dt was 8.4% faster: -8.42 +/- 0.28 Torr/s compared with -7.77 +/- 0.43 Torr/s for controls (P less than 0.05). The O2 consumption rate (VO2), calculated from dPO2/dt correcting for cat oxyhemoglobin, was 7.5% higher: 1.62 and 1.51 ml.100 g-1.min-1, respectively, for denervated and control CBs (P less than 0.05). The apparent Michaelis-Menten constant, Kmapp (defined as the PtiO2 where dPO2/dt decreased by 50% from the initial rate during the first 3 s after occlusion) was determined for each O2 disappearance curve. After denervation, Kmapp decreased significantly by -47%: 12.0 +/- 1.3 Torr compared with 22.6 +/- 2.5 Torr for controls (P less than 0.01). The data provide evidence for a second metabolic pathway for O2 in the CB that loses its influence on VO2 after denervation.  相似文献   

11.
The usefulness of the transcutaneous oxygen tension (tcPO2) in adults is under controversy. In a varied group of respiratory patients, results of the application of this method were compared with those from the arterial blood sampling method. Thirty-eight arterial oxygen tension (PaO2) and tcPO2 simultaneous determinations were made in a group of 22 patients, while in a sitting position; the tcPO2 measurements obtained (68 +/- 12.36 Torr) were significantly lower (p less than 0.05) than the PaO2 values (74 +/- 13.07 Torr). The correlation coefficient was 0.51 (p less than 0.01) with a regression line, tcPO2 = 31.58 + 0.48 PaO2. It is concluded that tcPO2 measurement does not correlate well with PaO2 and that this method cannot be always be safely applied and used in adults with respiratory diseases.  相似文献   

12.
Operation Everest II: preservation of cardiac function at extreme altitude   总被引:8,自引:0,他引:8  
Hypoxia at high altitude could depress cardiac function and decrease exercise capacity. If so, impaired cardiac function should occur with the extreme, chronic hypoxemia of the 40-day simulated climb of Mt. Everest (8,840 m, barometric pressure of 240 Torr, inspiratory O2 pressure of 43 Torr). In the five of eight subjects having resting and exercise measurements at the barometric pressures of 760 Torr (sea level), 347 Torr (6,100 m), 282 Torr (7,620 m), and 240 Torr, heart rate for a given O2 uptake was higher with more severe hypoxia. Slight (6 beats/min) slowing of the heart rate occurred only during exercise at the lowest barometric pressure when arterial blood O2 saturations were less than 50%. O2 breathing reversed hypoxemia but never increased heart rate, suggesting that hypoxic depression of rate, if present, was slight. For a given O2 uptake, cardiac output was maintained. The decrease in stroke volume appeared to reflect decreased ventricular filling (i.e., decreased right atrial and wedge pressures). O2 breathing did not increase stroke volume for a given filling pressure. We concluded that extreme, chronic hypoxemia caused little or no impairment of cardiac rate and pump functions.  相似文献   

13.
End tidal O2 and CO2 (PETCO2) pressures, expired volume, blood lactate concentration ([Lab]), and arterial blood O2 saturation [dry breath holds (BHs) only] were assessed in three elite breath-hold divers (ED) before and after deep dives and BH and in nine control subjects (C; BH only). After the dives (depth 40-70 m, duration 88-151 s), end-tidal O2 pressure decreased from approximately 140 Torr to a minimum of 30.6 Torr, PETCO2 increased from approximately 25 Torr to a maximum of 47.0 Torr, and expired volume (BTPS) ranged from 1.32 to 2.86 liters. Pulmonary O2 exchange was 455-1,006 ml. CO2 output approached zero. [Lab] increased from approximately 1.2 mM to at most 6.46 mM. Estimated power output during dives was 513-929 ml O2/min, i.e. approximately 20-30% of maximal O2 consumption. During BH, alveolar PO2 decreased from approximately 130 to less than 30 Torr in ED and from 125 to 45 Torr in C. PETCO2 increased from approximately 30 to approximately 50 Torr in both ED and C. Contrary to C, pulmonary O2 exchange in ED was less than resting O2 consumption, whereas CO2 output approached zero in both groups. [Lab] was unchanged. Arterial blood O2 saturation decreased more in ED than in C. ED are characterized by increased anaerobic metabolism likely due to the existence of a diving reflex.  相似文献   

14.
The relative roles of ventilation-perfusion (VA/Q) inequality, alveolar-capillary diffusion resistance, postpulmonary shunt, and gas phase diffusion limitation in determining arterial PO2 (PaO2) were assessed in nine normal unacclimatized men at rest and during bicycle exercise at sea level and three simulated altitudes (5,000, 10,000, and 15,000 ft; barometric pressures = 632, 523, and 429 Torr). We measured mixed expired and arterial inert and respiratory gases, minute ventilation, and cardiac output. Using the multiple inert gas elimination technique, PaO2 and the arterial O2 concentration expected from VA/Q inequality alone were compared with actual values, lower measured PaO2 indicating alveolar-capillary diffusion disequilibrium for O2. At sea level, alveolar-arterial PO2 differences were approximately 10 Torr at rest, increasing to approximately 20 Torr at a metabolic consumption of O2 (VO2) of 3 l/min. There was no evidence for diffusion disequilibrium, similar results being obtained at 5,000 ft. At 10 and 15,000 ft, resting alveolar-arterial PO2 difference was less than at sea level with no diffusion disequilibrium. During exercise, alveolar-arterial PO2 difference increased considerably more than expected from VA/Q mismatch alone. For example, at VO2 of 2.5 l/min at 10,000 ft, total alveolar-arterial PO2 difference was 30 Torr and that due to VA/Q mismatch alone was 15 Torr. At 15,000 ft and VO2 of 1.5 l/min, these values were 25 and 10 Torr, respectively. Expected and actual PaO2 agreed during 100% O2 breathing at 15,000 ft, excluding postpulmonary shunt as a cause of the larger alveolar-arterial O2 difference than accountable by inert gas exchange.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Recent measurements at extreme altitude and in low pressure chamber simulations have clarified the human responses to extreme hypoxia. Man can only tolerate the severe oxygen deprivation of great altitudes by an enormous increase in ventilation which has the advantage of defending the alveolar PO2 against the reduced inspired PO2. Nevertheless the arterial PO2 on the Everest summit is less than 30 Torr (1 Torr = 133.3 Pa). An interesting consequence of the hyperventilation is that the respiratory alkalosis greatly increases the oxygen affinity of the hemoglobin and assists in oxygen loading by the pulmonary capillary. The severe hypoxemia impairs the function of many organ systems including the central nervous system, and there is evidence of residual impairment of memory and manipulative skill in climbers returning from great altitudes. At the altitude of Mt. Everest, maximal oxygen uptake is reduced to 20-25% of its sea level value, and it is exquisitely sensitive to barometric pressure. It is likely that the seasonal variation of barometric pressure affects the ability of man to reach the summit without supplementary oxygen.  相似文献   

16.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

17.
To investigate the effects of both exercise and acute exposure to high altitude on ventilation-perfusion (VA/Q) relationships in the lungs, nine young men were studied at rest and at up to three different levels of exercise on a bicycle ergometer. Altitude was simulated in a hypobaric chamber with measurements made at sea level (mean barometric pressure = 755 Torr) and at simulated altitudes of 5,000 (632 Torr), 10,000 (523 Torr), and 15,000 ft (429 Torr). VA/Q distributions were estimated using the multiple inert gas elimination technique. Dispersion of the distributions of blood flow and ventilation were evaluated by both loge standard deviations (derived from the VA/Q 50-compartment lung model) and three new indices of dispersion that are derived directly from inert gas data. Both methods indicated a broadening of the distributions of blood flow and ventilation with increasing exercise at sea level, but the trend was of borderline statistical significance. There was no change in the resting distributions with altitude. However, with exercise at high altitude (10,000 and 15,000 ft) there was a significant increase in dispersion of blood flow (P less than 0.05) which implies an increase in intraregional inhomogeneity that more than counteracts the more uniform topographical distribution that occurs. Since breathing 100% O2 at 15,000 ft abolished the increased dispersion, the greater VA/Q mismatching seen during exercise at altitude may be related to pulmonary hypertension.  相似文献   

18.
We tested the hypothesis that blood flow is distributed among capillary networks in resting skeletal muscle in such a manner as to maintain uniform end-capillary PO2. Oxygen tension in venules draining two to five capillaries was obtained by using the phosphorescence decay methodology in rat spinotrapezius muscle. For 64 postcapillary venules among 18 networks in 10 animals, the mean PO2 was 30.1 Torr (range, 9.7-43.5 Torr) with a coefficient of variation (CV; standard deviation/mean) of 0.26. Oxygen levels of postcapillary venules within a single network or single animal, however, displayed a much smaller CV (0.064 and 0.094, respectively). By comparison, the CV of blood flow in 57 postcapillary venules of 17 networks in 9 animals was 1.27 with a mean flow of 0.011 +/- 0.014 nl/s and a range of 3.7 x 10(-4) to 6.5 x 10(-2) nl/s. Blood flow of postcapillary venules within single networks displayed a lower CV (mean, 0.51), whereas that in individual animals was 0.78. Results indicate that among venular networks, heterogeneity of oxygen tension is less than that of blood flow and within venular networks the heterogeneity of oxygen tension is much less than that of blood flow. In addition, postcapillary PO2 was independent of flow among venules in which both were measured. Results of this study may be attributable to three factors: 1) O2 diffusion between adjacent capillaries and venules, 2) structural remodeling in regions of lower PO2, and 3) O2-dependent local control mechanisms.  相似文献   

19.
As part of the American Medical Research Expedition to Everest in 1981, we measured hemoglobin concentration, red cell 2,3-diphosphoglycerate (2,3-DPG), Po2 at which hemoglobin is 50% saturated (P50), and acid-base status in expedition members at various altitudes. All measurements were made in expedition laboratories and, with the exception of samples from the South Col of Mt. Everest (8,050 m), within 2 h of blood collection. In vivo conditions were estimated from direct measurements of arterial blood gases and pH or inferred from base excess and alveolar PCO2. As expected, increased 2,3-DPG was associated with slightly increased P50, when expressed at pH 7.4. Because of respiratory alkalosis, however, the subjects' in vivo P50 at 6,300 m (27.6 Torr) was slightly less than at sea level (28.1 Torr). The estimated in vivo P50 was progressively lower at 8,050 m (24.9 Torr) and on the summit at 8,848 m (19.4 Torr in one subject). Our data suggest that, at extreme altitude, the blood O2 equilibrium curve shifts progressively leftward because of respiratory alkalosis. This left shift protects arterial O2 saturation at extreme altitude.  相似文献   

20.
Summary The oxygen binding properties of the blood of the camelid species vicuna, llama, alpaca and dromedary camel were measured and evaluated with respect to interspecific differences. The highest blood oxygen affinity, not only among camelids but of all mammals investigated so far, was found in the vicuna (P50=17.6 Torr compared to 20.3–21.6 Torr in the other species). Low hematocrits (23–34%) and small red blood cells (21–30 m3) are common features of all camelids, but the lowest values are found in theLama species. Capillary densities were determined in heart and soleus muscle of vicuna and llama. Again, the vicuna shows exceptional values (3720 cap/mm2 on average in the heart) for a mammal of this body size. Finally, heart weight as percent of body weight is higher in the vicuna (0.7–0.9%) than in the other camelids studied (0.5–0.7%). The possibility that these parameters, measured in New World tylopodes at sea level, are not likely to change considerably with transfer to high altitude, is discussed.In the vicuna, a unique combination of the following features seems to be responsible for an out-standing physical capability at high altitude: saturation of blood with oxygen in the lung is favored by a high blood oxygen affinity, oxygen supply being facilitated by low diffusion distances in the muscle tissue. Loading, as well as unloading, of oxygen is improved by a relatively high oxygen transfer conductance of the red blood cells, which is due to their small size and which compensates the negative effect of a low hematocrit on the oxygen conductance of blood. Blood oxygen transport is presumably favored by two factors: a relatively large heart mass and, as a result of low hematocrit, a low blood viscosity. Both are advantageous for achieving a high maximal cardiac output.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号