共查询到20条相似文献,搜索用时 15 毫秒
1.
P E Bourne A Sato P W Corfield L S Rosen S Birken B W Low 《European journal of biochemistry》1985,153(3):521-527
The crystal structure of the protein postsynaptic neurotoxin, erabutoxin b, has been refined at 0.140-nm resolution (R = 0.22) by restrained least-squares and interactive computer graphics. The study has established complete structural identity of the two sea-snake venom toxins, erabutoxin b and neurotoxin b, isolated from Laticauda semifasciata snakes taken in different Pacific Ocean waters. Two chemical-sequence inversion errors in erabutoxin b have been discovered during refinement, corrected and subsequently confirmed in both erabutoxin b and erabutoxin a by chemical analysis. The correct sequences are His6-Gln7, hitherto unsuspected, and Ser18-Pro19. The sequence correction His6-Gln7 explains the anomalous results of 1H NMR solution studies and those of early chemical modification experiments, which were in conflict with the previously published three-dimensional structure of erabutoxin b. On refinement, the five-stranded beta sheet described earlier is now shown to be discontinuous, split into a two-stranded beta loop and a three-stranded beta sheet. Unique features of the Pro44-Gly49 peripheral segment have now been identified. 51 water molecule positions have been located. 相似文献
2.
Structure and refinement of penicillopepsin at 1.8 A resolution 总被引:15,自引:0,他引:15
Penicillopepsin, the aspartyl protease from the mould Penicillium janthinellum, has had its molecular structure refined by a restrained-parameter least-squares procedure at 1.8 Å resolution to a conventional R-factor of 0.136. The estimated co-ordinate accuracy for the majority of the 2363 atoms of the enzyme is better than 0.12 Å. The average atomic thermal vibration parameter, B, for the atoms of the enzyme is 14.5 Å2. One determining factor of this low average B value is the large central hydrophobic core, in which there are two prominent clusters of aromatic residues, one of nine, the other of seven residues. The N and C-terminal domains of penicillopepsin display an approximate 2-fold symmetry: 70 residue pairs are topologically equivalent, related by a rotation of 177 ° and a translation of 1.2 Å. The analysis of the secondary structural features of the molecule reveals non-linear hydrogen bonding. In penicillopepsin, there is no difference in the mean hydrogen-bond parameters for the elements of α-helix, parallel or antiparallel β-pleated sheet. The mean values for these structural elements are: NO, 2.90 Å; NHO, 1.95 Å; N?O, 160 °. The average hydrogen-bond parameters of the reverse β-turns and the 310 helices are distinctly different from the above values. The analysis of sidechain conformational angles χ1 and χ2 penicillopepsin and other enzyme structures refined in this laboratory shows much narrower distributions as compared with those compiled from unrefined protein structures. The close proximity of the carboxyl groups of Asp33 and Asp213 suggests that they share a proton in a tight hydrogen-bonded environment (Asp33OD2 to Asp213OD1 is 2.87 Å). There are several solvent molecules in the active site region and, in particular, O39 forms hydrogen-bonded interactions with both aspartate residues. The disposition of the two carboxyl groups suggests that neither is likely to be involved in a direct nucleophilic attack on the scissile bond of a substrate. The average atomic B-factors of the residues in this region of the molecule are between 5 and 8 Å2, confirming the proposal that conformational mobility of the active site residues has no role in the enzymatic mechanism. However, conformational mobility of neighbouring regions of the molecule e.g. the “flap” containing Tyr75, is verified by the high B-factors for those residues. The positions of 319 solvent sites per asymmetric unit have been selected from difference electron density maps and refined. Thirteen have been classified as internal, and several of these may have key roles during catalysis. The positively charged Nζ atom of Lys304 forms hydrogen bonds to the carboxylate of Asp14 (internal ion pair) and to two internal water molecules O5 and O25. The protonated side-chain of Asp300 forms a hydrogen bond to Thr214O, 2.78 Å, and is the recipient of a hydrogen bond from a surface pocket water molecule O46. There is no possibility for direct interaction between Asp300 and Lys304 without large conformational changes of their environment. The intermolecular packing involves many protein-protein contacts (66 residues) with a large number of solvent molecules involved in bridging between polar residues at the contact surface. The penicillopepsin molecules resemble an approximate hexagonal close-packing of spheres with each molecule having 12 “nearest” neighbours. 相似文献
3.
4.
The activation of delipidated microsomal UDP-glucuronosyltransferase from pig liver (GT2P type of enzyme) was studied as a function of several structural modifications of 1-palmitoyl-sn-glycero-3-phosphocholine, which is known to be a good activator of the enzyme. The following types of compounds were tested: substitution of H for OH at position 2; substitution of an ether for an acyl link at position 1; variation of the phosphorus-nitrogen or acyl ester-phosphate ester distances; removal of the glycerol backbone; optical isomers; and substitution of phosphoethanolamine for phosphocholine. Although there were variations in the extent to which these compounds activated delipidated enzyme, all the above types of lipids were effective in this regard. By contrast, lipids with a net negative charge did not activate the enzyme. They inhibited it reversibly. Positively charged lipids, even those lacking a phosphate group, were effective activators. These results indicate that GT2P is unlikely to interact with specific chemical groups of its phospholipid milieu. Effective activation appears instead to depend on the physical properties of the lipid environment. 相似文献
5.
Rat submaxillary gland serine protease, tonin. Structure solution and refinement at 1.8 A resolution 总被引:10,自引:0,他引:10
Tonin is a mammalian serine protease that is capable of generating the vasoconstrictive agent, angiotensin II, directly from its precursor protein, angiotensinogen, a process that normally requires two enzymes, renin and angiotensin-converting enzyme. The X-ray crystallographic structure determination and refinement of tonin at 1.8 A resolution and the analysis of the resulting model are reported. The initial phases were obtained by the method of molecular replacement using as the search model the structure of bovine trypsin. The refined model of tonin consists of 227 amino acid residues out of the 235 in the complete molecule, 149 water molecules, and one zinc ion. The R-factor (R = sigma Fo - Fc/sigma Fo) is 0.196 for the 14,997 measured data between 8 and 1.8 A resolution with I greater than or equal to sigma (I). It is estimated that the overall root-mean-square error in the coordinates is about 0.3 A. The structure of tonin that has been determined is not in its active conformation, but one that has been perturbed by the binding of Zn2+ in the active site. Zn2+ was included in the buffer to aid the crystallization. Nevertheless, the structure of tonin that is described is for the most part similar to its native form as indicated by the close tertiary structural homology with kallikrein. The differences in the structures of the two enzymes are concentrated in several loop regions; these structural differences are probably responsible for the differences in their reactivities and specificities. 相似文献
6.
W Harder 《FEMS microbiology reviews》1990,7(3-4):191-199
This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems. 相似文献
7.
Structure/function relationships in nickel metallobiochemistry 总被引:3,自引:0,他引:3
Maroney MJ 《Current opinion in chemical biology》1999,3(2):188-199
Among the many highlights of nickel metallobiochemistry in 1998 were the discoveries that Escherichia coli glyoxalase I is the first example of a nickel isomerase, and that the superoxide dismutase isolated from Streptomyces seoulensis is a new structural class of superoxide dismutase that features thiolate ligation. 相似文献
8.
W. Harder 《FEMS microbiology letters》1990,87(3-4):191-200
Abstract This symposium marks the 15th anniversary of the discovery of microbodies in methylotrophic yeasts. In the intervening years much has been learned about the structure, function and biogenesis of these organelles and these advances are described. As our endeavours continued, unexpected results have confused commonly held views. This was for instance the case when microbody-minus mutants of yeasts became available which showed that some microbody matrix enzymes may be functional when present in the cytosol while others are not. At the molecular level, our understanding of structure/function relationships is also expanding. Examples are structural elements which relate to protein topogenesis and function of enzymes in different cell compartments. Other, perhaps more unusual, adaptations have also been encountered; some involve protein-protein interactions or even modified cofactors which possibly have helped methylotrophic yeasts to establish and/or maintain themselves in natural ecosystems. 相似文献
9.
X-ray analyses of aspartic proteinases. IV. Structure and refinement at 2.2 A resolution of bovine chymosin 总被引:4,自引:0,他引:4
M Newman M Safro C Frazao G Khan A Zdanov I J Tickle T L Blundell N Andreeva 《Journal of molecular biology》1991,221(4):1295-1309
The structure of calf chymosin (EC 3.4.23.3), the aspartic proteinase from the gastric mucosa, was solved using the technique of molecular replacement. We describe the use of different search models based on distantly related fungal aspartic proteinases and investigate the effect of using only structurally conserved regions. The structure has been refined to a crystallographic R-factor of 17% at 2.2 A resolution with an estimated co-ordinate error of 0.21 A. In all, 136 water molecules have been located of which eight are internal. The structure of chymosin resembles that of pepsin and other aspartic proteinases. However, there is a considerable rearrangement of the active-site "flap" and, in particular, Tyr75 (pepsin numbering), which forms part of the specificity pockets S1 and S1'. This is probably a consequence of crystal packing. Electrostatic interactions on the edge of the substrate binding cleft appear to account for the restricted proteolysis of the natural substrate kappa-casein by chymosin. The local environment of invariant residues is examined, showing that structural constraints and side-chain hydrogen bonding can play an important role in the conservation of particular amino acids. 相似文献
10.
Structure of human lactoferrin: crystallographic structure analysis and refinement at 2.8 A resolution 总被引:24,自引:0,他引:24
B F Anderson H M Baker G E Norris D W Rice E N Baker 《Journal of molecular biology》1989,209(4):711-734
The structure of human lactoferrin has been refined crystallographically at 2.8 A (1 A = 0.1 nm) resolution using restrained least squares methods. The starting model was derived from a 3.2 A map phased by multiple isomorphous replacement with solvent flattening. Rebuilding during refinement made extensive use of these experimental phases, in combination with phases calculated from the partial model. The present model, which includes 681 of the 691 amino acid residues, two Fe3+, and two CO3(2-), gives an R factor of 0.206 for 17,266 observed reflections between 10 and 2.8 A resolution, with a root-mean-square deviation from standard bond lengths of 0.03 A. As a result of the refinement, two single-residue insertions and one 13-residue deletion have been made in the amino acid sequence, and details of the secondary structure and tertiary interactions have been clarified. The two lobes of the molecule, representing the N-terminal and C-terminal halves, have very similar folding, with a root-mean-square deviation, after superposition, of 1.32 A for 285 out of 330 C alpha atoms; the only major differences being in surface loops. Each lobe is subdivided into two dissimilar alpha/beta domains, one based on a six-stranded mixed beta-sheet, the other on a five-stranded mixed beta-sheet, with the iron site in the interdomain cleft. The two iron sites appear identical at the present resolution. Each iron atom is coordinated to four protein ligands, 2 Tyr, 1 Asp, 1 His, and the specific Co3(2-), which appears to bind to iron in a bidentate mode. The anion occupies a pocket between the iron and two positively charged groups on the protein, an arginine side-chain and the N terminus of helix 5, and may serve to neutralize this positive charge prior to iron binding. A large internal cavity, beyond the Arg side-chain, may account for the binding of larger anions as substitutes for CO3(2-). Residues on the other side of the iron site, near the interdomain crossover strands could provide secondary anion binding sites, and may explain the greater acid-stability of iron binding by lactoferrin, compared with serum transferrin. Interdomain and interlobe interactions, the roles of charged side-chains, heavy-atom binding sites, and the construction of the metal site in relation to the binding of different metals are also discussed. 相似文献
11.
Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis 总被引:9,自引:0,他引:9
K Suguna R R Bott E A Padlan E Subramanian S Sheriff G H Cohen D R Davies 《Journal of molecular biology》1987,196(4):877-900
The structure of rhizopuspepsin (EC 3.4.23.6), the aspartic proteinase from Rhizopus chinensis, has been refined to a crystallographic R-factor of 0.143 at 1.8 A resolution. The positions of 2417 protein atoms have been determined with a root-mean-square (r.m.s.) error of 0.12 A. In the final model, the r.m.s. deviation from ideality for bond distances is 0.010 A, and for angle distances it is 0.034 A. During the course of the refinement, a calcium ion and 373 water molecules, of which 17 are internal, have been located. The active aspartate residues, Asp35 and Asp218, are involved in similar hydrogen-bonding interactions with neighboring residues and with several water molecules. One water molecule is located between the two carboxyl groups of the catalytic aspartate residues in a tightly hydrogen-bonded position. The refinement resulted in an unambiguous interpretation of the highly mobile "flap", a beta-hairpin loop region that projects over the binding pocket. Large solvent channels are formed when the molecules pack in the crystal, exposing the binding pocket and making it easily accessible. Intermolecular contacts involve mainly solvent molecules and a few protein atoms. The three-dimensional structure of rhizopuspepsin closely resembles other aspartic proteinase structures. A detailed comparison with the structure of penicillopepsin showed striking similarities as well as subtle differences in the active site geometry and molecular packing. 相似文献
12.
13.
Structure and refinement of the oxidized P21 form of uteroglobin at 1.64 A resolution 总被引:2,自引:0,他引:2
One of the monoclinic P21 forms of uteroglobin, a progesterone-binding protein secreted by the rabbit uterus, was crystallized and subjected to X-ray diffraction analysis at 1.64 A resolution. The analysis was refined to an R factor of 0.19 and the 1096 non-hydrogen atomic positions are known to an accuracy of about 0.18 A. The average isotropic temperature factor B was 10.4 A2. Uteroglobin is a dimer of two independent polypeptide chains of 70 residues linked by two disulfide bridges and related by a pseudo binary axis. Each monomer is folded into four alpha-helices. An oblong hydrophobic pocket is observed inside the dimer, and the possibility that it represents a progesterone-binding site is discussed. The present model includes 165 possible sites for water molecules, of which six are located in the hydrophobic pocket. Polar groups are involved in hydrogen bonding (intramolecular, intermolecular or with water molecules). 相似文献
14.
The crystal structure of the neutral protease from Bacillus cereus has been refined to an R factor of 17.5% at 0.2-nm resolution. The enzyme, an extracellular metalloendopeptidase, consists of two domains and binds one zinc and four calcium ions. The structure is very similar to that of thermolysin, with which the enzyme shares 73% amino-acid sequence identity. The active-site cleft between the two domains is wider in neutral protease than in thermolysin. This suggests the presence of a flexible hinge region between the two domains, which may assist enzyme action. The high-resolution analysis allows detailed examination of possible causes for the difference in thermostability between neutral protease and thermolysin. 相似文献
15.
Structure refinement of fructose-1,6-bisphosphatase and its fructose 2,6-bisphosphate complex at 2.8 A resolution 总被引:7,自引:0,他引:7
H M Ke C M Thorpe B a Seaton W N Lipscomb F Marcus 《Journal of molecular biology》1990,212(3):513-539
The structures of the native fructose-1,6-bisphosphatase (Fru-1,6-Pase), from pig kidney cortex, and its fructose 2,6-bisphosphate (Fru-2,6-P2) complexes have been refined to 2.8 A resolution to R-factors of 0.194 and 0.188, respectively. The root-mean-square deviations from the standard geometry are 0.021 A and 0.016 A for the bond length, and 4.4 degrees and 3.8 degrees for the bond angle. Four sites for Fru-2,6-P2 binding per tetramer have been identified by difference Fourier techniques. The Fru-2,6-P2 site has the shape of an oval cave about 10 A deep, and with other dimensions about 18 A by 12 A. The two Fru-2,6-P2 binding caves of the dimer in the crystallographically asymmetric unit sit next to one another and open in opposite directions. These two binding sites mutually exchange their Arg243 side-chains, indicating the potential for communication between the two sites. The beta, D-fructose 2,6-bisphosphate has been built into the density and refined well. The oxygen atoms of the 6-phosphate group of Fru-2,6-P2 interact with Arg243 from the adjacent monomer and the residues of Lys274, Asn212, Tyr264, Tyr215 and Tyr244 in the same monomer. The sugar ring primarily contacts with the backbone atoms from Gly246 to Met248, as well as the side-chain atoms, Asp121, Glu280 and Lys274. The 2-phosphate group interacts with the side-chain atoms of Ser124 and Lys274. A negatively charged pocket near the 2-phosphate group includes Asp118, Asp121 and Glu280, as well as Glu97 and Glu98. The 2-phosphate group showed a disordered binding perhaps because of the disturbance from the negatively charged pocket. In addition, Asn125 and Lys269 are located within a 5 A radius of Fru-2,6-P2. We argue that Fru-2,6-P2 binds to the active site of the enzyme on the basis of the following observations: (1) the structure similarity between Fru-2,6-P2 and the substrate; (2) sequence conservation of the residues directly interacting with Fru-2,6-P2 or located at the negatively charged pocket; (3) a divalent metal site next to the 2-phosphate group of Fru-2,6-P2; and (4) identification of some active site residues in our structure, e.g. tyrosine and Lys274, consistent with the results of the ultraviolet spectra and the chemical modification. The structures are described in detail including interactions of interchain surfaces, and the chemically modifiable residues are discussed on the basis of the refined structures.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
16.
Structure of a lambda-type Bence-Jones protein at 3.5-A resolution 总被引:27,自引:0,他引:27
17.
Structure of phage 434 Cro protein at 2.35 A resolution 总被引:9,自引:0,他引:9
The crystal structure of phage 434 Cro protein has been determined and refined against 2.35 A data to an R-factor of 19.5%. The protein comprises five alpha-helices and shows the helix-turn-helix motif found in other repressor proteins. 相似文献
18.
19.
Electron density calculations as an extension of protein structure refinement. Streptomyces griseus protease A at 1.5 A resolution 总被引:4,自引:0,他引:4
Ab initio quantum mechanical calculations have been used to obtain details of the electron density distribution in a high-resolution refined protein structure. It is shown that with accurate atomic co-ordinates, electron density may be calculated with a quality similar to that which can be obtained directly from crystallographic studies of small organic molecules, and that this density contains information relevant to the understanding of catalysis. Atomic co-ordinates from the 1.8 A and 1.5 A resolution refinements of the crystal structure of protease A from Streptomyces griseus have been used to examine the influence of the environment on the electron density in the side-chain of the active site histidine (His57). The neighbouring aspartic acid 102 is the dominant factor in the environment, and quantum mechanical calculations have been performed on these two residues. Most interesting from the point of view of understanding the catalytic process is the effect that Asp102 has on the electron density in the region of the imidazole nitrogen (N epsilon 2) adjacent to the active site serine 195. In the positively charged imidazolium species, there is a polarization of the N epsilon 2-H bond, reducing the bonding density in a manner that may lower the height of the energy barrier for proton transfer. In the uncharged imidazole species, the proximity of Asp102 causes a movement of density from the lone pair region of the N epsilon 2 into the pi bonding region above and below the plane of the ring. Although it is shown that the primary effect of the aspartic acid is electrostatic, this movement is perpendicular to the direction of the electric field inducing it. 相似文献
20.