首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Base specificity of mismatch repair in Streptococcus pneumoniae   总被引:4,自引:0,他引:4       下载免费PDF全文
DNA sequence analysis was undertaken to investigate the structural basis of mutations showing different integration efficiencies in Streptococcus pneumoniae. Wild type, mutant and revertant sequences at two sites in the amiA locus were determined. It appears that markers which transform efficiently or inefficiently can result from single base pair changes. A low efficiency (LE) marker corresponds to a C:G to T:A change and a high efficiency (HE) marker to a G:C to T:A change. In the latter case, two mismatches, G/A and T/C, can exist at the heteroduplex stage in transformation; only T/C appears to be recognized by the hex system which controls transforming efficiencies in pneumococcus. Each of the recognized mismatches, T/G and C/A, which result from transitional change, and T/C appears to involve at least one pyrimidine. It is proposed that the mismatch repair system of S. pneumoniae is directed against mismatched pyrimidines. DNA sequence analysis also reveals that short deletions (33 or 34 bases long) behave as very high efficiency markers, confirming that deletions are not recognized by the hex system.  相似文献   

5.
Although deficient in photoreactivation and some SOS-like functions, Streptococcus pneumoniae has the capacity to carry out excision repair when exposed to UV light. The repair ability and sensitivity to UV irradiation or treatment with chemical agents in the wild type and a UV-sensitive mutant strain indicate that UV-induced pyrimidine dimers might be repaired in pneumococcus by a system similar to the uvr-dependent system in Escherichia coli. A gene complementing the mutation conferring UV sensitivity of the mutant strain has been cloned. The coding region directs the synthesis of a polypeptide with a molecular weight of 78 kDa. The relationship with uvr-like protein in E. coli is discussed.  相似文献   

6.
EcoRI fragments of the amiA locus in Streptococcus pneumoniae were cloned either into a derivative of lambda or into pBR325 plasmid. Mutations in the amiA locus confer resistance to aminopterin. Pneumococcal DNA fractions were enriched for the desired EcoRI fragments by agarose gel electrophoresis. Recombinant clones were detected directly by transformation with DNA and lambda plaques or from single-colony lysates containing pBR325. The use of cloned DNA in pneumococcal transformation has revealed a number of features pertinent to transformation in general, and also the mismatch repair process. High transformation levels can be achieved, from 40 to 80% of a competent culture. These high levels of transformation with cloned DNA made in a foreign host are taken to confirm the absence of restriction effects on transformation in S. pneumoniae. At saturation, similar transformation levels are obtained with hybrid phage or hybrid plasmid DNAs, but the DNA amount required is 20 to 25 times lower for hybrid plasmid than for hybrid phage, probably because plasmid DNA is 10 times shorter than phage DNA. There is no "end effect" with intact hybrid DNA, i.e. similar transformation levels are achieved for markers whatever their map position on the cloned pneumococcal fragment. Cloned DNA has been used to study the action of the mismatch repair process (hex system). The presence of two mismatches in the same cell is not enough to saturate the hex system, and is not enough to kill the colony-forming center (cfc).  相似文献   

7.
8.
9.
Summary We describe the isolation of amethopterin-resistant mutants induced by quinacrine treatment of exponentially growing cultures of Streptococcus pneumoniae. Only mutants located by recombination analysis in a few hundred base pairs were further studied. They were cloned and their DNA sequences show that most of them are ±1-base frame-shift mutants. They are excised and repaired to a degree similar to transition mutants (low efficiency class), suggesting that the mismatches resulting from a transition or a ±1-base mutation are similar substrates for the Hex mismatch repair system.  相似文献   

10.
The mutS gene product of Escherichia coli and Salmonella typhimurium is one of at least four proteins required for methyl-directed mismatch repair in these organisms. A functionally similar repair system in Streptococcus pneumoniae requires the hex genes. We have sequenced the S. typhimurium mutS gene, showing that it encodes a 96-kilodalton protein. Amino-terminal amino acid sequencing of purified S. typhimurium MutS protein confirmed the initial portion of the deduced amino acid sequence. The S. typhimurium MutS protein is homologous to the S. pneumoniae HexA protein, suggesting that they arose from a common ancestor before the gram-negative and gram-positive bacteria diverged. Overall, approximately 36% of the amino acids of the two proteins are identical when the sequences are optimally aligned, including regions of stronger homology which are of particular interest. One such region is close to the amino terminus. Another, located closer to the carboxy terminus, includes homology to a consensus sequence thought to be diagnostic of nucleotide-binding sites. A third one, adjacent to the second, is homologous to the consensus sequence for the helix-turn-helix motif found in many DNA-binding proteins. We found that the S. typhimurium MutS protein can substitute for the E. coli MutS protein in vitro as it can in vivo, but we have not yet been able to demonstrate a similar in vitro complementation by the S. pneumoniae HexA protein.  相似文献   

11.
Mismatch repair (MMR)-deficient cells are shown to produce >15-fold more methotrexate-resistant colonies than MMR normal cells. The increased resistance to methotrexate is primarily due to gene amplification since all the resistant clones contain double-minute chromosomes and increased copy numbers of the DHFR gene. In addition, integration of linearized or retroviral DNAs into chromosomes is also significantly elevated in MMR-deficient cells. These results suggest that in addition to microsatellite instability and homeologous recombination, MMR is also involved in suppression of other genome instabilities such as gene amplification and chromosomal DNA integration.  相似文献   

12.
Genes with homology to the bacterial mutS gene, which encodes a protein involved in post-replication DNA mismatch repair, are known in several organisms. Using a degenerate PCR strategy, we cloned a Trypanosoma cruzi genomic DNA fragment homologous to the mutS gene class two (MSH2). This fragment was used as a probe to select the corresponding cDNAs from a T. cruzi cDNA library. The complete sequence of the gene (3304 bp), denominated TcMSH2, was obtained. The sequence contained an open reading frame of 2889 bp coding for a putative protein of 962 amino acids. Computational analyses of the amino acid sequence showed 36% identity with MSH2 proteins from other eukaryotes and revealed the presence of all functional domains of MutS proteins. Hybridization analyses indicated that the TcMSH2 gene is present as a single copy gene that is expressed in all forms of the T. cruzi life cycle. The role of the product of the TcMSH2 gene in mismatch repair was investigated by negative dominance phenotype analyses in Escherichia coli. When eukaryotic muts genes are expressed in a prokaryotic system, they increase the bacterial mutation rate. The same phenomenon was observed with the TcMSH2 cDNA, indicating that T. cruzi MSH2 interferes with the bacterial mismatch system. Phylogenetic analyses showed that the T. cruzi gene grouped with the MSH2 clade confirming the nature of the gene isolated in this work.  相似文献   

13.
Jun SH  Kim TG  Ban C 《The FEBS journal》2006,273(8):1609-1619
The molecular mechanisms of the DNA mismatch repair (MMR) system have been uncovered over the last decade, especially in prokaryotes. The results obtained for prokaryotic MMR proteins have provided a framework for the study of the MMR system in eukaryotic organisms, such as yeast, mouse and human, because the functions of MMR proteins have been conserved during evolution from bacteria to humans. However, mutations in eukaryotic MMR genes result in pleiotropic phenotypes in addition to MMR defects, suggesting that eukaryotic MMR proteins have evolved to gain more diverse and specific roles in multicellular organisms. Here, we summarize recent advances in the understanding of both prokaryotic and eukaryotic MMR systems and describe various new functions of MMR proteins that have been intensively researched during the last few years, including DNA damage surveillance and diversification of antibodies.  相似文献   

14.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

15.
Summary During transformation of Streptococcus pneumoniae, mismatch repair occurs on donor-recipient heteroduplexes harboring some mismatched base pairs. A few mutants defective in mismatch repair have been isolated and termed hex -. However, neither the number of genes involved nor their products have yet been identified. In an attempt to characterize such genes we have used an additive transformation approach — that is the inactivation of genes by insertion of chimeric plasmids. Pneumococcal DNA fragments were joined in vitro to a plasmid derivative of pBR325 that carries an erythromycin resistance determinant and does not replicate autonomously in S. pneumoniae. Ery-r transformants obtained with such a ligation mixture arise via homology-dependent integration of the chimeric plasmids into the chromosome. Hex - mutants have been selected among the ery-r population. Comparison of these mutants by Southern blot hybridization with a vector probe reveals that at least two genes are involved in mismatch repair.  相似文献   

16.
Streptococcus pneumoniae is a member of a small group of bacteria that display phosphocholine on the cell surface, covalently attached to the sugar groups of teichoic acid and lipoteichoic acid. The putative pathway for this phosphocholine decoration is, in its first two enzymes, functionally similar to the CDP-choline pathway used for phosphatidylcholine biosynthesis in eukaryotes. We show that the licC gene encodes a functional CTP:phosphocholine cytidylyltransferase (CCT). The enzyme has been expressed and purified to homogeneity. Assay conditions were optimized, particularly with respect to linearity with time, pH, Mg(2+), and ammonium sulfate concentration. The pure enzyme has K(M) values of 890+/-240 microM for CTP, and 390+/-170 microM for phosphocholine. The k(cat) is 17.5+/-4.0 s(-1). S. pneumoniae CTP:phosphocholine cytidylyltransferase (SpCCT) is specific for CTP or dCTP as the nucleotide substrate. SpCCT is strongly inhibited by Ca(2+). The IC(50) values for recombinant and native SpCCT are 0.32+/-0.04 and 0.27+/-0.03 mM respectively. The enzyme is also inhibited by all other tested divalent cations, including Mg(2+) at high concentrations. The cloning and expression of this enzyme sets the stage for design of inhibitors as possible antipneumococcal drugs.  相似文献   

17.
Bacillus subtilis possesses carbon-flux regulating histidine protein (Crh), a paralog of the histidine protein (HPr) of the phosphotransferase system (PTS). Like HPr, Crh becomes (de)phosphorylated in vitro at residue Ser46 by the metabolite-controlled HPr kinase/phosphorylase HPrK/P. Depending on its phosphorylation state, Crh exerts regulatory functions in connection with carbohydrate metabolism. So far, knowledge on phosphorylation of Crh in vivo has been limited and derived from indirect evidence. Here, we studied the dynamics of Crh phosphorylation directly by non-denaturing gel electrophoresis followed by Western analysis. The results confirm that HPrK/P is the single kinase catalyzing phosphorylation of Crh in vivo. Accordingly, phosphorylation of Crh is triggered by the carbon source as observed previously for HPr, but with some differences. Phosphorylation of both proteins occurred during exponential growth and disappeared upon exhaustion of the carbon source. During exponential growth, ~80% of the Crh molecules were phosphorylated when cells utilized a preferred carbon source. The reverse distribution, i.e. around 20% of Crh molecules phosphorylated, was obtained upon utilization of less favorable substrates. This clear-cut classification of the substrates into two groups has not previously been observed for HPr(Ser)~P formation. The likely reason for this difference is the additional PTS-dependent phosphorylation of HPr at His15, which limits accumulation of HPr(Ser)~P.  相似文献   

18.
The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3' was cloned in a strain of Streptococcus pneumoniae that lacked both restriction endonucleases DpnI and DpnII. The gene was cloned as a 3.7-kilobase fragment of chromosomal DNA from a DpnII-containing strain inserted in both possible orientations in the multicopy plasmid vector pMP5 to give recombinant plasmids pMP8 and pMP10. Recombinant plasmids were selected by their resistance to DpnII cleavage. Cells carrying the recombinant plasmids modified phage in vivo so that it was restricted by DpnI- but not DpnII-containing hosts. They also showed levels of DNA methylase activity five times higher than that in cells of the original DpnII strain. No DpnII activity was observed in the clones; therefore, it was concluded that the insert did not contain an intact DpnII endonuclease gene and that methylation of host DNA did not turn on a latent form of the gene.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号