首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Thirty-three insular small mammal communities along the coast of Massachusetts (USA) were surveyed to investigate the biogeographic relationships of the insular communities and to examine the distribution patterns of individual species. Nine species of terrestrial small mammals were observed in the total insular fauna, whereas thirteen occurred on the mainland. The species-area relation yielded a z value of 0.06, which is the lowest value yet reported for insular mammal communities.Multiple logistic regression was used to calculate probability functions for each species in order to identify variables potentially important in determining a species' occurrence on islands and to estimate probabilities of occurrence on islands. Statistically significant and ecologically interpretable functions were obtained for all but one species. Occurrence on islands was positively related to increasing island size in four species and to decreasing island isolation in four species. The extremely low z value, negative correlations of species number with isolation variables, and the inclusion of an isolation variable in the logistic functions of four species indicated that immigration was an important determinant of small mammal occurrence on these islands. There was a positive relationship between population density and number of islands occupied.Logistic regression has several advantages over linear discriminant function analysis, and we suggest that it may be useful in other ecological studies and in the preservation of endangered species.  相似文献   

2.
Comparative biogeography of mammals on islands   总被引:1,自引:0,他引:1  
Insular faunas of terrestrial mammals and bats are examined on a worldwide basis to test the adequacy of equilibrium and historical legacy models as explanations for species-area relationships. Species numbers of bats on islands conform to predictions from equilibrium theory, whereby recurrent immigrations and extinctions influence species richness. By contrast, species numbers of terrestrial mammals on islands result from a historical legacy of very low immigration rates on oceanic islands (the faunas are colonization-limited) and by the fragmentation of once contiguous continental faunas to form relictual populations, which subsequently undergo extinctions, on landbridge islands (the faunas are extinction-limited). This explanation is supported by several lines of evidence: (1) z values (slopes of species-area curves) are lower for non-volant mammals on oceanic islands than for those on landbridge islands, but are the opposite for bats; (2) z values for non-volant mammals are lower than those for bats on oceanic islands, but are higher than those for bats on landbridge islands; and (3) landbridge island faunas are attenuated mainland faunas, whereas those on oceanic islands are ecologically incomplete. No support is found for alternative hypotheses to explain low species-area slopes for terrestrial mammals on oceanic islands.  相似文献   

3.
Australia has contributed a disproportionate number of the world's mammal extinctions over the past 200 years, with the greatest loss of species occurring through the continent's southern and central arid regions. Many taxonomically and ecologically similar species are now undergoing widespread decline across the northern Australian mainland, possibly driven by predation by feral cats and changed fire regimes. Here, we report marked recent declines of native mammal species in one of Australia's few remaining areas that support an intact mammal assemblage, Melville Island, the largest island off the northern Australian coast. We have previously reported a marked decline on Melville Island of the threatened brush‐tailed rabbit‐rat (Conilurus penicillatus) over the period 2000–2015, linked to predation by feral cats. We now report a 62% reduction in small mammal trap‐success and a 36% reduction in site‐level species richness over this period. There was a decrease in trap‐success of 90% for the northern brown bandicoot (Isoodon macrourus), 64% for the brush‐tailed rabbit‐rat and 63% for the black‐footed tree‐rat (Mesembriomys gouldii), but no decline for the common brushtail possum (Trichosurus vulpecula). These results suggest that populations of native mammals on Melville Island are exhibiting similar patterns of decline to those recorded in Kakadu National Park two decades earlier, and across the northern Australian mainland more generally. Without the implementation of effective management actions, these species are likely to be lost from one of their last remaining strongholds, threatening to increase Australia's already disproportionate contribution to global mammal extinctions.  相似文献   

4.
Aim Conservation of species is an ongoing concern. Location Worldwide. Methods We examined historical extinction rates for birds and mammals and contrasted island and continental extinctions. Australia was included as an island because of its isolation. Results Only six continental birds and three continental mammals were recorded in standard databases as going extinct since 1500 compared to 123 bird species and 58 mammal species on islands. Of the extinctions, 95% were on islands. On a per unit area basis, the extinction rate on islands was 177 times higher for mammals and 187 times higher for birds than on continents. The continental mammal extinction rate was between 0.89 and 7.4 times the background rate, whereas the island mammal extinction rate was between 82 and 702 times background. The continental bird extinction rate was between 0.69 and 5.9 times the background rate, whereas for islands it was between 98 and 844 times the background rate. Undocumented prehistoric extinctions, particularly on islands, amplify these trends. Island extinction rates are much higher than continental rates largely because of introductions of alien predators (including man) and diseases. Main conclusions Our analysis suggests that conservation strategies for birds and mammals on continents should not be based on island extinction rates and that on islands the key factor to enhance conservation is to alleviate pressures from uncontrolled hunting and predation.  相似文献   

5.
Abstract. The reasons why some species are resistant to extinction or are better invaders of islands than others remain unexplained. In this study, we test the hypothesis that mammals living on the mainland at higher density than predicted by the density/body mass relationship have a much greater chance to colonize a small island successfully, and/or that they are less likely to become extinct when living on small islands. For this, we used data compiled on mammals from a number of Mediterranean islands. We show a nested pattern for mammals on western Mediterranean islands, which suggests that the distribution of mammals on these islands is not the result of a random process. Using two comparative methods, we show that mammal density on the mainland, corrected for body mass, is negatively correlated with island size. Mammals with a high density compared to the density/mass relationship are the best invaders and/or probably have less chance of going extinct on small islands when population size is small.  相似文献   

6.
Morphological evolution is accelerated among island mammals   总被引:4,自引:4,他引:0       下载免费PDF全文
Millien V 《PLoS biology》2006,4(10):e321
Dramatic evolutionary changes occur in species isolated on islands, but it is not known if the rate of evolution is accelerated on islands relative to the mainland. Based on an extensive review of the literature, I used the fossil record combined with data from living species to test the hypothesis of an accelerated morphological evolution among island mammals. I demonstrate that rates of morphological evolution are significantly greater—up to a factor of 3.1—for islands than for mainland mammal populations. The tendency for faster evolution on islands holds over relatively short time scales—from a few decades up to several thousands of years—but not over larger ones—up to 12 million y. These analyses form the first empirical test of the long held supposition of accelerated evolution among island mammals. Moreover, this result shows that mammal species have the intrinsic capacity to evolve faster when confronted with a rapid change in their environment. This finding is relevant to our understanding of species' responses to isolation and destruction of natural habitats within the current context of rapid climate warming.  相似文献   

7.
Abstract. Data on the birds, amphibians, reptiles and mammalian species of the Bazaruto Archipelago, Mozambique are presented. Species diversity was compared to island size and with data for other East African Islands. There was a low degree of endemism and the different faunas (particularly for mammals and the herpetofauna) were mainland in origin and a nested subset of that on the mainland. Several mammal and bird families were absent from the islands suggesting a process of relaxation on these relatively young islands with little colonization. Reasons for the observed diversity are discussed.  相似文献   

8.
Ian Abbott 《Oecologia》1978,33(2):221-233
Summary New evidence from the passerine faunas of islands off Southwestern Australia agrees with the hypothesis that the passerine faunas of Australian and New Zealand islands are impoverished because most passerine species are poor colonizers. Dispersal of landbirds onto Carnac Island near Perth was infrequent, and many of those species that arrived were represented by single birds. Comparison of similarly structured island and mainland habitats showed that island habitats still have fewer passerine bird species than mainland habitats. Island bird faunas are more stable over short periods of time than over long periods; this is contrary to island avifaunas in the Northern Hemisphere.The following features typify the avifaunas of Australian islands: immigration of species of land birds occurs infrequently; (natural) extinction is rare; and the degree of saturation of the avifaunas is low. Without more direct evidence, competitive interactions should not be invoked to account for the species poverty of these insular avifaunas.  相似文献   

9.
浙江海岛鸟兽地理生态学的初步研究   总被引:6,自引:1,他引:5  
对浙江洞头岛及舟山五岛的鸟兽调查表明,海岛动物的种数较相邻大陆为低,但种群密度却高于大陆,岛上的某些种类出现生态位扩展的现象。舟山五岛兽类的种数和岛屿面积呈正相关,其关系式为S=2.12A~(0.29),但种群密度随着岛屿面积的增大而下降。文中据此提出了保护和发展岛屿动物资源的某些措施。  相似文献   

10.
Understanding the mutualistic services provided by species is critical when considering both the consequences of their loss or the benefits of their reintroduction. Like many other Pacific islands, New Zealand seed dispersal networks have been changed by both significant losses of large frugivorous birds and the introduction of invasive mammals. These changes are particularly concerning when important dispersers remain unidentified. We tested the impact of frugivore declines and invasive seed predators on seed dispersal for an endemic tree, hinau Elaeocarpus dentatus, by comparing seed dispersal and predation rates on the mainland of New Zealand with offshore sanctuary islands with higher bird and lower mammal numbers. We used cameras and seed traps to measure predation and dispersal from the ground and canopy, respectively. We found that canopy fruit handling rates (an index of dispersal quantity) were poor even on island sanctuaries (only 14% of seeds captured below parent trees on islands had passed through a bird), which suggests that hinau may be adapted for ground‐based dispersal by flightless birds. Ground‐based dispersal of hinau was low on the New Zealand mainland compared to sanctuary islands (4% of seeds dispersed on the mainland vs. 76% dispersed on islands), due to low frugivore numbers. A flightless endemic rail (Gallirallus australis) conducted the majority of ground‐based fruit removal on islands. Despite being threatened, this rail is controversial in restoration projects because of its predatory impacts on native fauna. Our study demonstrates the importance of testing which species perform important mutualistic services, rather than simply relying on logical assumptions.  相似文献   

11.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   

12.
Cats are generalist predators that have been widely introduced to the world's ~179 000 islands. Once introduced to islands, cats prey on a variety of native species many of which lack evolved defenses against mammalian predators and can suffer severe population declines and even extinction. As islands house a disproportionate share of terrestrial biodiversity, the impacts of invasive cats on islands may have significant biodiversity impacts. Much of this threatened biodiversity can be protected by eradicating cats from islands. Information on the relative impacts of cats on different native species in different types of island ecosystems can increase the efficiency of this conservation tool. We reviewed feral cat impacts on native island vertebrates. Impacts of feral cats on vertebrates have been reported from at least 120 different islands on at least 175 vertebrates (25 reptiles, 123 birds, and 27 mammals), many of which are listed by the International Union for the Conservation of Nature. A meta‐analysis suggests that cat impacts were greatest on endemic species, particularly mammals and greater when non‐native prey species were also introduced. Feral cats on islands are responsible for at least 14% global bird, mammal, and reptile extinctions and are the principal threat to almost 8% of critically endangered birds, mammals, and reptiles.  相似文献   

13.
Two processes are thought to generate positive relationships between species richness and island area. The areaper se hypothesis states that larger islands maintain larger populations, which are less susceptible to extinction. The habitat hypothesis states that larger islands contain more habitats, and therefore a greater number of habitat specialists. However, the importance of each mechanism is debated. I tested the areaper se and habitat hypotheses by comparing relationships between plant abundance, age and island area in five shrub species on islands off the coast of British Columbia, Canada. Results showed that two shrub species increased in both abundance and age with island area. The remaining three species showed no differences in abundance and age with island area. Conifer abundances increased with island area, which generated differences in habitat availability. Smaller islands were dominated by open habitat, while larger islands contained both open and forested habitats. Changes in habitat availability with island area could explain patterns in plant abundance and age. The two species that increased in abundance with island area were commonly found in conifer forest on the mainland, and their distributions were consistent with the distribution forest habitat. Positive relationships between plant age and island area in these two species may result from lower survivorship in the open habitat, which dominated small islands. The three species that showed no relationship between abundance and island area are commonly found in open habitat on the mainland, and their island distributions paralleled the availability of open habitat on islands. Similar plant ages on different sized islands may result from their occurrence in open habitat on both large and small islands. Overall results support the habitat hypothesis and indicate that species distributions result from the interaction between habitat affinities and changes in habitat availability with island area.  相似文献   

14.
Many bird species were extirpated or became extinct when prehistoric man reached oceanic islands We list > 200 species of extinct island birds only recorded as sub-fossils and which probably vanished due to prehistoric man In addition we list c 160 cases where an extant species has been found as subfossil on islands where it no longer occurs Several species today considered endemic to single islands of island groups had a much wider distribution in the past Biogeographic analyses of insular avifaunas are almost meaningless it the extensive prehistoric extinctions are not taken into account
Most extinct species belong to Anatidae Rallidae and Drcpanididae while local extirpations are numerous among doves and seabirds Smaller birds are rare mainly due to sampling bias and taphonomic factors The bird populations were depleted mainly by overhunting predation by introduced vertebrates and alteration of the original vegetation
Prehistoric humans on islands although dependent on limited animal resources regularly failed to exploit these in a sustainable way Several cases where human populations disappeared from islands in the Pacific may have been due to over-exploitation of native animals
Prehistoric man reached most tropical and temperate islands and most of the few remaining island faunas have been severely depleted in historic times The prehistoric extinctions emphasize the extreme vulnerability and value of the very few pristine island faunas that still remain  相似文献   

15.
Aim To investigate and establish the significance of various island biogeographic relationships (geographical, ecological and anthropological) with the species richness of introduced mammals on offshore islands. Location The 297 offshore islands of the New Zealand archipelago (latitude: 34–47°S; longitude: 166–179°E). Methods Data on New Zealand offshore islands and the introduced mammals on them were collated from published surveys and maps. The species richness of small and large introduced mammals were calculated for islands with complete censuses and regressed on island characteristics using a Poisson distributed error generalized linear model. To estimate the ‘z‐value’ for introduced mammals on New Zealand islands, least‐squares regression was used [log10 S vs. log10 A]. Results High collinearity was found between the area, habitat diversity and elevation of islands. The island characteristics related to the species richness of introduced mammals differed predictably between large and small mammals. The species richness of introduced large mammals was mostly related to human activities on islands, whereas species richness of introduced small mammals was mostly related to island biogeographical parameters. The ‘z‐value’ for total species richness is found to be expectedly low for introduced mammals. Main conclusions Distance appears to have become ecologically trivial as a filter for introduced mammal presence on New Zealand offshore islands. There is strong evidence of a ‘small island’ effect on New Zealand offshore islands. The species richness of both small and large introduced mammals on these islands appears to be most predominantly related to human use, although there is some evidence of natural dispersal for smaller species. The ecological complexity of some islands appears to make them less invasible to introduced mammals. Some human activities have an interactive effect on species richness. A small number of islands have outlying species richness values above what the models predict, suggesting that the presence of some species may be related to events not accounted for in the models.  相似文献   

16.
A global review of island endemic birds   总被引:2,自引:0,他引:2  
Although fewer than one-fifth of the world's bird species are restricted to islands, over 90% of bird extinctions during historic times have occurred on islands. The major identified cause has been the effects of exotic animal species introduced by man; the largest number of documented extinctions has occurred on islands of the Pacific Ocean.
Some 39% (402) of threatened bird species are restricted to islands and more than 907; of these are endemic to a single geopolitical unit. The largest numbers occurring in such units are in Indonesia (91) and the Philippines (34). As a region, the Pacific holds more threatened species (110) than any other, including almost half of those considered Endangered and over 40% of the Vulnerable species.
Most threatened island species are forest-dwelling. A high proportion of the Endangered species use seasonal/temperate forest. While habitat destruction now poses the greatest overall threat to island birds (affecting over half the species restricted to islands), the presence of introduced species threatens 30 of the 66 Endangered species.
Although immediate extinctions of island species can best be averted by mitigating the effects of introductions, the removal of native forests will be a more severe problem in the longer term. There is an urgent need for ecologists to provide detailed information on the habitats of both threatened and endemic species so that more appropriate and effective conservation programmes can be developed.  相似文献   

17.
ABSTRACT Populations of many seabirds and other species that nest along coasts are declining due to habitat degradation and loss. An improved understanding of the species‐specific factors that determine nest density across a landscape is therefore critical for conservation efforts. We examined factors that affected the density (number per hectare) and abundance (number at a sampling site) of nests of Little Terns (Sternula albifrons) on the Sinai Peninsula, Egypt. Terns preferred to nest on islands rather than the mainland, with islands constituting 64% of the area surveyed, but containing 99% of the 439 tern nests we found. Nest densities were highest on islands that were small, located at moderate distances from the mainland, and irregularly shaped or elongated. Most nests (69%) were on islands with areas < 3 ha, although these islands represented < 5% of total island area, and islands with the highest nest densities were 80–300 m from the mainland. Terrestrial predators were more likely to occur on larger islands, visiting three of the largest four islands. Most tern nests were within 1 m of shorelines, causing island perimeter to be a strong influence on nest density. Island shape was the only factor that significantly affected nest abundance, with more nests on islands with relatively long perimeters for their size. Our results suggest that protection or creation of relatively small, slender islands at moderate distances from shore may be an effective means of increasing the number of breeding sites for Little Terns. Although not generally considered a potential determinant of nest site preferences for seabirds, island shape is likely to be important for species that prefer sites adjacent to water, including species that nest on beaches and seaside cliffs.  相似文献   

18.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

19.
The theory of island biogeography was originally developed to evaluate the influence of island size and distance from mainland on their number and composition of species. Meanwhile, this theory has become an important tool for nature conservation strategies. Due to various reasons, organisms arriving at islands are tending along their evolution to develop dwarf of giant forms. Although islands are constantly emerging and decaying, they are representing a constant phenomenon on earth, and therefore have a particular importance for evolutionary processes. Today, genetic analyses have archived importance in the disentanglement of colonisation processes of islands. Furthermore, islands often represent localities with high proportions of endemic species, which are increasingly threatened through the invasion of alien species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号