首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed methimazole to simulate hypothyroidism. Male broiler chickens (Gallus gallus) growing from 7 to 28 days of age were fed diets containing 18% crude protein and either 0 or 1 g methimazole per kilogram of diet. At 28 days, these two groups were further subdivided into groups receiving 18% crude protein diets containing either 0 or 1 mg triiodothyronine (T3) per kilogram. Birds were sampled at 28, 30, and 33 days. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME) activity, isocitrate dehydrogenase, aspartate amino transferase, and the expression of the genes for ME, fatty acid synthase (FAS), and acetyl coenzyme carboxylase (ACC). Hypothyroidism decreased IVL and ME at 28 days of age; however, T3 supplementation for 2 days restored both IVL and ME. Paradoxically, continuing T3 replenishment for an additional 3 days decreased IVL but did not decrease ME activity. In contrast, supplemental T3 decreased IVL in euthyroid birds, regardless of the dosing interval, but had no effect on ME activity. Although methimazole decreased ME gene expression, there was only a transitory relationship between enzyme activity and gene expression when plasma T3 was restored with exogenous T3. These data may help to explain some of the apparent reported dichotomies in lipid metabolism elicited by changes in the thyroid state of animals. In addition, most metabolic changes in response to feeding T3 occurred within 2 to 5 days, suggesting that changes in intermediary metabolism preceded morphological changes. In conclusion, the thyroid state of the animal will determine responses to exogenous T3.  相似文献   

2.
This experiment was conducted to determine possible relationships between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens (Gallus gallus) growing from 7 to 28days of age were fed diets containing 12 or 30% protein ad libitum. Both groups were then switched to the diets containing the opposite level of protein. Birds were sampled at 0, 6, 9, 12, 18 and 24h following the switch in protein levels. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), aspartate aminotransferase (AAT) and isocitrate dehydrogenase (NADP) (ICD) activities. In addition, ME, AAT, ICD, fatty acid synthase (FAS), and acetyl coenzyme carboxylase (ACC) gene expression rates were determined. IVL and ME activities were inversely related to dietary protein levels (12 to 30%) and to acute changes from 12 to 30%. In contrast, expression of ME, FAS and ACC genes was decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out; however, that metabolic regulation at the gene level only occurs when feeding very high or very low levels of dietary protein.  相似文献   

3.
Hubbard x Hubbard chickens (Gallus gallus) growing from 7 to 28 days of age were fed 12 or 30% protein diets and then switched to the diets containing the opposite level of protein. Birds were killed on days 28, 29, 30 and 31. Measurements taken included in vitro lipogenesis (IVL), malic enzyme (ME), isocitrate dehydrogenase (ICD) and aspartate aminotransferase (AAT) activities and the expression of the genes for ME, fatty acid synthase (FAS) and acetyl coenzyme carboxylase (ACC). Gene expression was determined with a combined RT-PCR using SYBR green as a fluorescent probe monitored in a real time mode. IVL and ME activity were inversely related to dietary protein levels (12 to 30%) and to acute changes in either level. In contrast, both ICD and AAT activities were increased by any increase in dietary protein. Lipogenic gene expression was inversely related to protein level, whether fed on an acute or chronic basis. It appears that real time RT-PCR is an acceptable method of estimating gene expression in birds. In addition, further work will focus on primer sizes that might further optimize RT-PCR as an instrument for studying the regulation of avian lipid metabolism. Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. However, it should be pointed out that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

4.
We designed three experiments to determine both the optimal dose of and time on experiment for methimazole (MMI; 1-methyl-2-mercaptimidazole). Our goals were to determine if chicken growth was related to thyroid hormone levels and if intermediary metabolism changed along with changes in thyroid hormone levels. Initiating MMI at one week of age decreased (P<0.01) plasma thyroid levels and growth in four-week old birds. In contrast, initiating MMI at two and three weeks of age decreased (P<0.05) hormone levels without affecting growth as severely. Although initiating MMI at two weeks of age depressed (P<0.05) plasma thyroid hormones at four weeks, there was little change in vitro lipogenesis at four weeks. Again, initiating MMI at one week of age decreased body weight, plasma thyroid hormones and in vitro lipogenesis at four weeks of age. In addition, this treatment also decreased (P<0.05) malic enzyme activity at this same age period. The second experiment showed that MMI, initiated at 14 days, had no significant effect on 28-day body weight and again decreased both plasma T(3) and T(4) but T(3) replacement increased plasma T(3) in both 14-28-day treatment groups. All body weights were similar at 30 days, however. Lastly, diets containing graded levels of MMI decreased thyroid hormones and body weight (0>0.25>0.5>1 g MMI/kg). In contrast, only the two higher levels (0.5 and 1 g MMI/kg) decreased in vitro lipogenesis. Growth depression, caused by MMI feeding, can occur without changes in lipid metabolism. The length of MMI administration may be as important as dose level in obtaining effects (growth, thyroid hormone depression and inhibition of lipogenesis).  相似文献   

5.
1. Ross male broiler chicks growing from 14 to 28 days of age were fed 14 and 20% protein diets (4 kcal day-1/body wt0.66) or 20 and 28% protein diets (2.8 kcal day-1/body wt0.66) in a 2 x 2 factorial arrangement to determine the effects of protein and energy intakes on in vitro lipogenesis (IVL) and net glucose production (NGP). Plasma concentrations of insulin, glucagon, thyroid hormones (T3 and T4) and somatomedin-C (Sm-C) were estimated by radioimmunoassay. 2. There was a significant (P less than 0.05) decrease in IVL in the chicks given the higher daily protein intake. 3. The higher protein intake increased (P less than 0.05) NGP while the lower energy intake decreased (P less than 0.05) NGP. 4. Insulin, both thyroid hormones and Sm-C were affected by dietary energy and protein intakes.  相似文献   

6.
The aim of this study was to investigate the hormonal regulation of the avian homolog of mammalian uncoupling protein (avUCP) by studying the impact of thyroid hormones and insulin on avUCP mRNA expression in chickens (Gallus gallus). For 3 wk, chicks received either a standard diet (control group), or a standard diet supplemented with triiodothyronine (T(3); T3 group) or with the thyroid gland inhibitor methimazole (MMI group). A fourth group received injections of the deiodinase inhibitor iopanoic acid (IOP group). During the 4th wk of age, all animals received two daily injections of either human insulin or saline solution. The results indicate a twofold overexpression of avUCP mRNA in gastrocnemius muscle of T3 birds and a clear downregulation (-74%) in MMI chickens compared with control chickens. Insulin injections had no significant effect on avUCP mRNA expression in chickens. This study describes for the first time induction of avUCP mRNA expression by the thermogenic hormone T(3) in chickens and supports a possible involvement of avUCP in avian thermogenesis.  相似文献   

7.
The purpose of these experiments were to determine possible relationships between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12 or 30% protein ad libitum. Both groups were then switched on day 28 to the diets containing the opposite level of protein. Birds were killed on day 28 (basal values prior to the switch) and at 12, 18 and 24 h post switch. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12 to 30%) and to acute changes from 12 to 30%. Malic enzyme, fatty acid synthase and acetyl coenzyme A carboxylase genes were constant over a dietary protein range of 12 to 21% as in previous experiments, but decreased by feeding a 30% protein diet in the present experiments (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. Metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

8.
The purpose of this experiment was to determine the possible relationship between certain indices of lipid metabolism and specific gene expression in chickens fed graded levels of dietary crude protein. Male, broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 21 or 30% protein ad libitum. In addition, another group of birds was fed on a regimen consisting of a daily change in the dietary protein level (12 or 30%). This latter group was further subdivided such that one-half of the birds received each level of protein on alternating days. Birds were sampled from 28 to 30 days of age. Measurements taken included in vitro lipogenesis, malic enzyme activity the expression of the genes for malic enzyme, fatty acid synthase and acetyl coenzyme carboxylase. In vitro lipogenesis and malic enzyme activity were inversely related to dietary protein levels (12-30%) and to acute changes from 12 to 30%. In contrast, expression of malic enzyme, fatty acid synthase and acetyl CoA carboxylase genes were constant over a dietary protein range of 12-21%, but decreased by feeding a 30% protein diet (acute or chronic feeding). Results of the present study demonstrate a continued role for protein in the regulation of broiler metabolism. It should be pointed out, however, that metabolic regulation at the gene level only occurs when feeding very high levels of dietary protein.  相似文献   

9.
1. Forty-eight chicks (21 days old) were implanted (+/- 50 mg 17-beta estradiol; EBI) and fed diets containing +/- 0.1% propylthiouracil (PTU) for 7 days to determine the role of gonadal hormones in the regulation of energy metabolism in the hypothyroid chick. 2. In vitro lipogenesis (IVL) and glucose production (NGP) were measured in liver explants. 3. Liver glycogen (GLY) metabolism was studied in particulate fractions (50,000 x g) of liver. 4. Glycogen synthetase activity (GLYSYN) was assayed in the presence of glucose-6-phosphate (G-6P; 0, 0.15 and 10 mM) to determine activation states. 5. PTU and EBI increased (P less than 0.05) both GLY concentration and GLYSYN activity in chicks but, did not increase G-6P activity ratios or the in vitro activation of GLYSYN. 6. Both PTU and EBI increased (P less than 0.05) IVL and NGP. 7. Estradiol magnifies the effects of PTU in chicks suggesting an interaction between thyroid status and gonadal function.  相似文献   

10.
Feeding broilers by alternating different diets for 1 or 2 days is known as sequential feeding, and it possibly reduces leg problems since it slows down early growth and may enhance general activity. The present study compared continuous feeding with a standard diet (C: metabolisable energy = 12.55 MJ/kg, crude protein = 190 g/kg) with alternations of a high-energy/low-protein diet (E+P-:+7% ME; -20% CP) and a low-energy/high-protein diet (E-P+: -7% ME,+20% CP) and investigated its effects on growth, behaviour and gait score in 352 male Ross broiler chickens. Sequential feeding was carried out during ten 48-h sequential-feeding cycles from 8 to 28 days of age. Three treatments were compared: complete diet (C) and two alternations of diets varying in protein and energy contents (S1: E+P- followed by E-P+; and S2: E-P+ followed by E+P-). Chickens received the same feed during the starter and finisher periods (0 to 7 and 29 to 38 days of age). Body weight (BW), feed intake, general activity and gait score, bone quality and carcass conformation were measured to evaluate leg condition and general performance. Sequential feeding significantly reduced BW at 28 days of age (S1: -9.1%; S2: -3.7%/C group; P < 0.05) and S1 were lighter than S2. In both sequential groups, time spent standing increased (C: 28%; S1:33%; S2: 35%; P < 0.05) and leg abnormalities decreased (mean gait score: C: 2.61; S1: 2.45; S2: 2.38; P < 0.02). This improvement was not related to changes in bone quality. BW at slaughter was impaired in Group S1 only, and the feed conversion ratio throughout the rearing period was not significantly impaired by sequential feeding. However, abdominal fat was higher in the S2 group. Sequential feeding using diets varying in energy and crude protein can be a useful method of reducing leg problems in broilers since it improves gait score without impairing growth performance when used as early as 8 days of age and up to not less than 8 days before slaughter in order to compensate for reduced growth. This improvement can be explained by reduced early growth and enhanced motor activity. However, it appears that the low-energy diet should be given first in order to avoid a reduction in BW at slaughter.  相似文献   

11.
A familial case of generalized resistance to thyroid hormone (GRTH) is described. A 17-year-old man (case 1), who had been treated with methimazole under the diagnosis of Graves' disease and his 11-year old sister (case 2) visited our clinic for the evaluation of their thyroid function. They lacked the signs and symptoms of thyrotoxicosis in spite of extremely high serum thyroid hormone levels. Their plasma TSH levels were not suppressed, but in fact markedly increased after TRH loading. Their peripheral indices of thyroid hormone were within normal limits and were not influenced by exogenous T3 administration. Even 150 micrograms T3 administration for 7 days did not fully suppress the TRH-stimulated TSH level in case 2. The two patients thus were diagnosed to have GRTH. Sera from their father and another sister showed identical abnormalities.  相似文献   

12.
We showed previously that propylthiouracil (PTU), a thyroid inhibitor, could alleviate several major signs of hereditary muscular dystrophy in chickens. The goals of the present investigation were to: (1) determine whether a nearly athyroid condition (achieved within two days after hatching by surgical thyroidectomy plus PTU) during an 11-day period beneficially affects the dystrophic condition when followed by triiodothyronine (T3) replacement to 33 days of age; (2) determine the beneficial effects on the expression of avian dystrophy when the thyroidectomized-PTU-treated chickens received a wide range of moderate to low T3 replacement doses beginning by two days after thyroidectomy; and (3) examine the thyroid hormone receptor system in dystrophic muscle for a possible abnormality. Thyroid deprivation increased muscle function (righting ability) and reduced plasma creatine kinase activity in dystrophic chickens. The major thyroid-related abnormality in dystrophic pectoralis muscles was an increased maximum binding capacity of solubilized nuclear T3 receptors.  相似文献   

13.
Rats were fed selenium-deficient (less than 0.005 mg selenium/kg) or selenium-supplemented diets (0.1 mg selenium/kg, as Na2SeO2) for up to five wks from weaning to assess the effects of developing selenium deficiency on the metabolism of thyroid hormones. Within two wks 3:5,3'-triiodothyronine (T3) production from thyroxine (T4) in liver homogenates from selenium-deficient rats was significantly lower compared with the activity in liver homogenates from selenium-supplemented rats. This decreased activity was probably responsible, in part, for the higher T4 and lower T3 concentrations in plasma from the selenium-deficient rats after 3, 4, and 5 weeks of experiment. Repletion of selenium-deficient rats with single intra-peritoneal injections of 200 micrograms selenium/kg body wt. (as Na2SeO3) 5 days before sampling reversed the effects of the deficiency on thyroid hormone metabolism and significantly increased liver and plasma glutathione peroxidase activities. However a dose of 10 micrograms selenium/kg body wt given to rats of similar low selenium status had no effect on thyroid hormone metabolism or glutathione peroxidase activity but did reverse the increase in hepatic glutathione S-transferase activity characteristic of severe selenium deficiency. Imbalances in thyroid hormone metabolism are an early consequence of selenium deficiency and are probably not related to changes in hepatic xenobiotic metabolizing enzymes associated with severe deficiency.  相似文献   

14.
Propylthiouracil (PTU), thyroxine (T4) or thyreoliberin (TRH) were injected in ovo to modify the thyroid state of chicken embryos. Significant sexual differences were observed in the effects of these treatments on the plasma concentrations of thyroid hormones and on plantaris muscle characteristics (DNA, RNA, populations of muscle fibers) in 3- and 35-day old male and female chickens. The T4 plasma concentration is lower in control males; it is decreased in PTU treated females and in the T4 treated females at 35 days. The T3 plasma concentration is lowered at 3 days in all treated chickens and also at 35 days in the TRH treated animals. The slow (STnO) and the fast (FTOG) fibers of the plantaris are always more numerous in males. In controls, the number of FTOG fibers remains steady between 3 and 35 days; at the same time, the number of STnO fibers rises in males only. Both PTU and T4 treatments increase the number of the FTOG and the STnO fibers respectively before and after the 3rd day. TRH treatment increases the number of STnO fibers at 3 and 35 days in males, but reduces it at 3 days in females. Thus changes in the number of FTOG fibers can be induced during in ovo myogenesis, whereas the number of STnO fibers may increase after hatching.  相似文献   

15.
Parameters of the peripheral metabolism of thyroxine (T4) were studied in the early postnatal period. Iopanoic acid (IOP) was administered to newborn rats that were either euthyroid or rendered hypothyroid in utero by propylthiouracil (PTU) or methimazole (MMI) administration to the mothers during gestation and injected with thyroxine on postnatal days 6 and 7. In euthyroid newborn rats given IOP from postnatal day 6, the plasma T4 level increased (+50%) while the plasma 3,3',5'-triiodothyronine (T3) level slightly decreased (-18%). Peripheral deiodination of T4 was also reduced (about -50%) as estimated by thyroid 125I uptake after injection of 125I (3'-5')L-T4. In the newborn rats rendered hypothyroid in utero and given T4 on postnatal days 6 and 7, IOP treatment started on day 4 decreased the constant rate of elimination (-50%), the distribution volume (-43%) and the metabolic clearance (-74%) of plasma T4. The results were the same in PTU- and MMI-treated newborn rats. The differences between newborn and adult animals under IOP treatment are discussed.  相似文献   

16.
The aim of this study was to examine whether the relative gene expression of AdipoR1 and AdipoR2 in rat adipose tissue is altered by thyroid hormones, and whether this might relate to their circulating thyroid hormones and adiponectin levels. Hyper- and hypothyroidism were induced by daily oral administration of levothyroxine and methimazole in rats, respectively, over a 42 days period. Real-time PCR analysis was performed to evaluate the changes in AdipoR1 and AdipoR2 mRNA levels in the adipose tissue on days 15, 28, 42, and also 2 weeks after the cessation of treatment. In response to treatment with methimazole, mRNA levels of AdipoR1 and AdipoR2 decreased in the white adipose tissue compared to the euthyroid rats (p < 0.05). This decline was reversible 2 weeks after treatment cessation. The mRNA levels of AdipoR1 and AdipoR2 were increased in the hyperthyroid group of animals compared to euthyroid control (p < 0.05), and its changes were reversible 2 weeks after treatment cessation (P < 0.05). Adiponectin receptors gene expression levels in the adipose tissue of treated animals have positive correlations with thyroid hormones concentrations. Our results suggest that AdipoR1 and AdipoR2 gene expression is regulated by thyroid hormones in hypo- and hyperthyroidism.  相似文献   

17.
Amiodarone has been found to decrease serum T3 by blocking peripheral T4 5'-deiodinase. This reduction in T3 levels may contribute to the effectiveness of this drug in moderating cardiac arrhythmias. To further characterize the effect of amiodarone on thyroid hormone metabolism and biological action, male Sprague-Dawley rats were thyroidectomized and then fed 500 ug T4 or 50 ug T3 and 500 mg amiodarone/kg of powdered diet for 6 to 8 weeks. Hepatic and cardiac levels of T4, T3, alpha-glycerophosphate dehydrogenase (GPD) and malic enzyme (ME) were used as indicators of thyroid hormone availability and action at the cellular level. Conversion of T4 to T3 was measured in liver homogenates. Serum TSH, T4 and T3 were also measured. Amiodarone reduced hepatic GPD and ME in thyroidectomized rats receiving dietary T4. Liver T4 levels were significantly increased by amiodarone and the T3/T4 ratio was reduced (P less than .05). Amiodarone inhibited hepatic T4 to T3 conversion and decreased serum T3. The decreased T3 action at the cellular level, indicated by the reduction in hepatic GPD and ME, is not due to pharmacologic effects of amiodarone since these enzyme levels were not affected by amiodarone in thyroidectomized rats replaced with T3.  相似文献   

18.
In the chicken the transition of a poikilotherm to a homeotherm reaction upon cold exposure takes place in the perinatal period between pipping and hatching. However, newly hatched chicks cannot maintain their body temperature within narrow limits after cold exposure. The fact that relatively little attention was payed on the role of thyroid hormones in the thermoregulatory reaction to cold of young chicks was probably due to the hypothetically long latention time that was thought to be necessary to bring about changes in secretory activity by cold stimulation. However, more recently, rapid changes (within hours) of thyroid hormone concentrations upon cold exposure were described in the chickens and the quail. In this study, changes in circulating T3 and T4 concentrations upon cold exposure of young chicks during the first two weeks were followed, that means during the period wherein NST (non-shivering thermogenesis), if it exists at all, should be progressively replaced by ST (shivering thermogenesis). Because of the importance of feeding condition on thyroid hormone levels, the experiments were carried out with and without a preceeding fasting period. In all experiments a short-term cold exposure of young chickens (1-11 days) fed ad lib decreased T3 but increased T4 levels while a reversed picture was found after short cold exposure of the fasted animals. However, after prolonged cold stimulus (15 degrees C) of young chickens fed ad lib, plasma T3 was also significantly elevated over that of controls whereas T4 levels returned to normal values. A prolonged warm treatment (37 degrees C) of young chickens fed ad lib resulted in significantly lower T3 and higher T4 concentrations. After a prolonged cold treatment no differences in T4 or T3 response upon TRH were found whereas the warm treatment abolished these responses upon TRH. However, a cold treatment at the stage of incubation during which the hypothalamo-hypophyseal control of thyroid function is established (dag 10-14) enhanced the T4 response to TRH with a long lasting effect extending to the posthatch period. Since T3 is thought to be the active form of thyroid hormones with regard to thermopoiesis we have studied more specifically the effect of blocking peripheral conversion of T4 on thermoregulatory abilities in young chicks and the influence of temperature treatment on monodeiodination capacity. The lower rectal temperatures following the interference with the peripheral monodeiodination of T4, the effect being more pronounced at the lower ambient temperature, are indicative for a preponderant role of T3 on thermogenesis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Recently we reported that hyperglucagonemia induced by glucagon infusion causes a decline in serum Triiodothyronine (T3) and a rise in reverse T3 (rT3) in euthyroid healthy volunteers. These changes in T3 and rT3 levels were attributed to altered T4 metabolism in peripheral tissues. However, the contribution of altered release of thyroid hormones by the thyroid gland could not be excluded. Since the release of thyroid hormones is suppressed by exogenous administration of L-thyroxine (L-T4) in appropriate dosage, we studied thyroid hormone levels for up to 6 hours after intravenous administration of glucagon in euthyroid healthy subjects after administration of L-T4 for 12 weeks. A control study was conducted using normal saline infusion. Plasma glucose rose promptly following glucagon administration demonstrating its physiologic effect. Serum T4, Free T4 and T3 resin uptake were not altered during both studies. Glucagon infusion induced a significant decline in serum T3 (P less than 0.01) and a marked rise in rT3 (P less than 0.01) whereas saline administration caused no alterations in T3 or rT3 levels. Thus the changes in T3 and rT3 were significantly different during glucagon study when compared to saline infusion. (P less than 0.01 for both comparisons). Therefore, this study demonstrates that changes in serum T3 and rT3 caused by hyperglucagonemia may be secondary to altered thyroid hormone metabolism in peripheral tissues and not due to altered release by the thyroid gland, since the release of thyroid hormones is suppressed by exogenous L-T4 administration.  相似文献   

20.
The nutritional composition of diets and the provision of exogenous enzymes play important roles in animal performance. Here, we evaluated the individual and combined impact of nutrients (metabolizable energy (ME), digestible lysine (dLys), available phosphorus and calcium (avP–Ca)) and exogenous multicarbohydrase and phytase complex (MCPC) enyzmes on the growth performance and feed efficiency of broiler chickens from 10 to 42 days (d) of age. Experimental diets were formulated in a Box-Behnken design to contain various levels of ME (11.89, 12.21, 12.54 or 13.06 MJ/kg), dLys (0.91%, 0.93%, 0.96% or 1.00%) and avP/Ca (0.12/0.47%, 0.21/0.58% or 0.33/0.68%). The effect of MCPC was expressed in terms of the extra nutrients released. The diets were formulated to have consistent substrate contents (i.e., arabinoxylan and phytate). Feed intake (FI), BW gain (BWG) and feed conversion ratio (FCR) were described via polynomial equations (R2 = 0.99, 0.98 and 0.81, respectively), with interconnections between variables (ME, dLys and avP–Ca). Available P–Ca was the most important factor affecting FI (quadratically), and BWG and FCR (linearly). Reducing the avP content from 0.33% to 0.12% in diets lacking MCPC resulted in 25% and 33% decreases in FI and BWG, respectively, and a 12% increase in FCR. The ME and dLys contents also linearly affected these performance parameters to a lesser degree; FI decreased by 400 g when the ME was reduced by 1.17 MJ/kg, and by 300 g following a 0.09% reduction of dLys, while the same reductions in ME and dLys decreased BWG by 120 g and 150 g, respectively. The inclusion of MCPC alleviated the reduction of FI, BWG and FCR by decreasing the avP–Ca. Thus, ME and dLys were the most important factors affecting BWG and FCR in broilers fed diets containing MCPC. When MCPC was added, ME negatively affected FI (r = −0.89, P < 0.001), whereas the dLys content was correlated with BWG (r = 0.74, P < 0.001). Both ME and dLys affected FCR (r = −0.83 and −0.85, respectively). Supplementing MCPC allowed the reduction of ME, dLys and avP–Ca in the diet without affecting performance. Indeed, MCPC’s effect promoted with the release of the following nutrients: 0.56 MJ ME/kg, 0.06% dLys, and 0.15% and 0.13% avP and Ca, respectively. The results indicate nutrient effect and interaction on performance and feed additive potential for nutrient release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号