首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The immunoreaction of a rabbit chromogranin A and B antiserum was studied in normal human pancreatic islets. By examination of consecutive light microscopical sections, it was revealed that, at high antiserum concentrations (1:2000 or less), the whole islet area was heavily labelled, although the peripheral glucagon (A)-cells were the most intense in their immunoreaction. At low antiserum concentrations (1:4000 or more) the A-cells still showed the same intense labelling reaction, but the central B-cells were weakly labelled. Electron microscopically, reactivity towards the chromogranin A and B antiserum and the monoclonal insulin antibodies was present in the same central electron-dense core of the B-cell secretory granules, as demonstrated after application of the immunogold technique at different antibody dilutions. In the A-cells, the chromogranin immunoreactivity was concentrated at the peripheral mantle of the secretory granules. The D-cell granules showed a weak immunolabelling. Examination of human islets with the monoclonal chromogranin A antibody LK2H10 revealed immunogold labelling only in the peripheal mantle of the A-cell granules, while the B-cell granules were unlabelled.The present results show that a chromogranin peptide is co-stored with insulin the in normal human B-cell secretory granules. Although the exact composition of this B-cell chromogranin is unknown, it is not identical to that of the chromogranin A present in the A-cell granules.  相似文献   

2.
Summary The fine structure of some oval anterior pituitary cells of the adult male rats immunostained with an antiserum to rat prolactin was investigated electron microscopically on the adjacent thin sections. Their fine structural appearance is identical with that of acidophils of the small granule type (Yoshimura et al. 1974) resembling the Kurosumi-Oota LH gonadotrophs. The secretory granules of the oval cells are spherical in shape, ranging from 130 to 200 nm in diameter. Large polymorphic granules, which are generally believed to be characteristic of prolactin cells, are absent from their cytoplasm. It is concluded that the acidophil of the small granule type with a similar fine structure to the Kurosumi-Oota LH gonadotroph is a prolactin secreting cell.  相似文献   

3.
We used cationized colloidal gold (CCG) to investigate the distribution of anionic sites in different secretory granules of mouse pancreatic acinar cell regranulation. Localization of anionic sites with CCG was carried out on ultrathin sections of a mouse pancreas, fixed in Karnovsky's fixative and OsO4 and embedded in Araldite. After pilocarpine-stimulated degranulation, there was a marked diminution in the anionic charge density of immature and mature granules of the 4-hr group (approximately 43.0 gold particles/microm2) compared to the 8-hr mature granules group (approximately 64.6 gold particles/microm2). Scattergram analysis to investigate the correlation between section profile size and cationized gold labeling density revealed a reverse correlation, the small granule profiles demonstrated a higher density compared to the larger profiles of the same group. On the basis of these observations, it appears that a post-translational processing of secretory content influences the granule anionic charge and thus may affect the intragranular buffer capacity.  相似文献   

4.
Summary Polyclonal rabbit antisera raised against oxytocin, bovine neurophysin I and vasopressin were used, together with an immunogold complex, to localise the peptides in ultrathin sections of ovine corpus luteum. The only organelle which consistently showed gold labelling was the secretory granule of the large luteal cell. In non-consecutive sections of the same large luteal cell all the granules showed a similar level of labelling after oxytocin or neurophysin I antisera: however no immunolabelling was detected for vasopressin. Oxytocin and neurophysin seem to be rapidly lost after secretion since exocytosed granule cores showed no labelling above background levels.  相似文献   

5.
Using bone marrow embedded in hydrophilic resin Lowicryl K4M and cationic colloidal gold pH 1.0 labelling, we studied sites of sulphation and sulphated glycosaminoglycans ultrastructurally in various maturational stages of both eosinophil granulocytes and eosinophil granules of guinea pig. Eosinophil granules reacted positively to cationic gold, the pattern of labelling varying according to the degree of cell maturation. The formation of eosinophil granules takes place throughout the myelocyte stage. Early eosinophil myelocytes contain a large Golgi apparatus with active granulogenesis, while late ones contain a small and less active Golgi apparatus. All the immature granules were labelled positively. However, mature granules with a central crystal bar lost their affinity towards colloidal gold. Interestingly, strong colloidal gold labelling was also observed in the trans to transmost Golgi apparatus, especially in immature eosinophil granulocytes. This indicates that sulphation of glycosaminoglycans occurs in the trans to transmost Golgi apparatus of eosinophil granulocytes. Prior absorption with poly-L-lysine prevented colloidal gold labelling of tissue sections. Methylation of sections at 37°C did not alter the gold labelling, whereas the labelling disappeared after methylation at 60°C. Prior treatment with chondroitinase ABC or heparinase I abolished the majority of colloidal gold labelling in immature eosinophil granules. Taking these results together, we conclude that immature eosinophil granules contain sulphated glycosaminoglycans including chondroitin sulphate or heparan sulphate or both.  相似文献   

6.
Immunoelectron microscopic studies demonstrated cortical granule lectins (CGLs) in coelomic, unfertilized and fertilized eggs of Xenopus laevis . An antiserum raised against purified cortical granule lectin 1 specifically reacted with the CGLs in immunoblotting and agar diffusion tests. When ultrathin sections were treated with the antiserum and protein A-gold solution, gold particles, indicating antigenic sites, were seen over cortical granules of coelomic and unfertilized eggs, and over the perivitelline space, the vitelline coat and the condensed region of the fertilization layer of fertilized eggs. The pre-fertilization layer immediately adjacent to the outer margin of the vitelline coat in unfertilized eggs was free from gold particles. These observations suggest that released CGLs permeate through the vitelline coat of fertilized eggs and interact with the pre-fertilization layer mainly at the outer margin of the vitelline coat, resulting in formation of the fertilization layer which acts as a block to polyspermy.  相似文献   

7.
Electrical activation of the hamster egg was used to study cortical granule constituents before and after exocytosis. The activated hamster eggs underwent cortical granule decondensation just prior to and at the time of exocytosis. Some of the cortical granules of aged, unactivated eggs underwent similar changes. FITC- and gold-conjugated Lens culinaris agglutinin (LCA) bound intensely to the surfaces of activated but not unactivated eggs. This labelling was associated with the microvilli. Permeabilized eggs exhibited discrete cortical labelling before activation, with a subsequent decrease following the cortical reaction. Gold-conjugated LCA specifically bound to cortical granules when incubated with thin sections. FITC-soybean trypsin inhibitor (SBTI) bound in discrete foci in the cortex of unactivated eggs. Following activation, cortical labelling by SBTI decreased. Aprotinin and benzamidine hydrochloride inhibited FITC-SBTI from binding to the egg cortex. Gold-avidin localization of biotin-SBTI in the electron microscope demonstrated that condensed cortical granules did not bind SBTI but decondensed or exocytosing granules did. This suggests that a cortical granule protease is exposed just prior to exocytosis. Activated eggs exhibited dramatic decreases in the number of hamster sperm penetrating the cytoplasm, suggesting that a plasma membrane block to polyspermy is temporally related to cortical granule exocytosis.  相似文献   

8.
The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 microns in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
H Steffens 《Malacologia》1979,18(1-2):527-532
In early September most of the neurons of the buccal ganglia of Helix pomatia contain neurosecretory material as membrane bound granules. There is only one, in exceptional cases 2 types of granules per cell. This suggests that different types of granules do not change into one another, and that each granule type contains a different secretory product. One granule type contains PAF-positive neurosecretory material, another one catecholamines, but most of the granules cannot be associated with special substances. The identified giant neurons B1-B4 contain granules in less density than the smaller neurons. B1 and B2 resemble each other in their granule type, whereas both B3 and B4 differ from B1 and B2.  相似文献   

10.
We used cationized colloidal gold in order to investigate the distribution of anionic sites in different secretory granules of rat and mouse mast cells. The localization of the anionic sites was performed by post-embedding labeling of thin sections of rat peritoneal cells or mouse skin tissue, fixed in Karnovsky's fixative and OsO4 and embedded in Araldite or LR white, respectively. In all cases anionic sites were demonstrated with a high density variation depending on cell type. In all mast cell secretory granules we have observed the highest density (ca. 500–900 gold particles/m2), while in other peritoneal cell granules it was about 10 times less (ca. 40–80 gold particles/m2). Pretreatment of the LR white sections with heparinase I and III resulted in a reduction of 97% and 72%, respectively, in the binding of the gold particles to the granules, indicating that the majority of the gold binding reactivity is due to heparin. Correlation of section profile area with labeling density revealed that the smaller granules were significantly more labeled when compared to the larger profiles. On the basis of these observations it seems that a post-translational change (mainly sulfation of heparin) of secretory content influences the granule anionic charge and thus may affect the intragranule buffer capacity.  相似文献   

11.
Summary The secretory granules of rat bronchiolar Clara cells were classified into different types by their ultrastructural appearances followed by immunocytochemistry using anti-rat 10 kDa Clara cell-specific protein (10 kDa CCSP) antibody. One predominant type was the oval to round granule (type A granule), of which the matrix was composed of a map-like mixture of electron-dense and less electron-dense material. Another predominant type was the rod-shaped granule (type B granule). The content of type B granules varied from a finely fibrillar (type B1 granule) to an electron-dense, rod-like (type B3 granule) structure. Various intermediate types (type B2 granule) between type B1 and B3 granules were also found. Small cytoplasmic vesicles were found occasionally in close proximity to type B2 or B3 granule. Another type of granule (type C granule) was large, up to 8 m in diameter, and contained a moderately electron-dense amorphous matrix. Both type A and C granules stained at a similar density with the antibody. The nascent form of type A granules, which was found in the vicinity to the trans face of the Golgi apparatus, was also labeled. On the other hand, the labeling density of type B granules varied: type B1 granules were almost devoid of immunolabeling, whereas type B3 granules were intensely labeled. Type B2 granules stained with the antibody; however, the labeling density was less than that of type B3 granules. The small cytoplasmic vesicles of type B2 granules were labeled. From these findings, it is suggested that the granules of rat Clara cells consist of two types of granules of distinct origin; one appears to derive from condensing vacuoles of Golgi origin, whereas the other may be formed by membranefusions with small cytoplasmic vesicles of unknown source.  相似文献   

12.
A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues--pancreatic, lacrimal, and submandibular--from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pI and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.  相似文献   

13.
Double immunocytochemical labeling applying the protein A-gold technique   总被引:23,自引:0,他引:23  
In the present study we report the modifications and the different steps of the protein A-gold (pAg) technique that allow the simultaneous demonstration of two antigenic sites on the same tissue section. The labeling is carried out in the following manner: face A of the tissue section is incubated with an antiserum followed by a pAg complex prepared with large gold particles; face B of the same tissue section is then incubated with a second antiserum followed by a pAg complex prepared with small gold particles. Each of the pAg complexes reveals a different antigenic site on opposite faces of the tissue section. The transparency of the section in the electron beam allows the visualization of the gold particles present on both faces. The double labeling pAg technique was applied for the simultaneous demonstration of two secretory proteins in the same Golgi, condensing vacuoles, and zymogen granules of the rat pancreatic acinar cells.  相似文献   

14.
Human, rat and mouse pituitary tissues have been examined electron microscopically in transmission (TEM), scanning-transmission (STEM) and scanning (SEM) modes for the surface appearance of the secretory granules in tissue sections. Cryofixed and cryosectioned tissue showed only slightly protruding granule profiles which had a smooth surface. Cryofixed, freeze-dried and Epon embedded pituitaries, on the other hand, demonstrated swollen and furrowed surfaces over the granules after contact with water. This topography could also be seen after glutaraldehyde fixation but less after post-fixation in OsO4. The surface alterations in the sections of pituitary secretory granules are thought to be due to differences in the homogeneity of the resin infiltration, leaving resin-free openings where water can enter. It also seems probable that the Epon resin is more influenced by water than has been previously assumed, based on the findings of efficient elimination of osmium from the granules after incubation of tissue sections in water for only 10 min.  相似文献   

15.
Human, rat and mouse pituitary tissues have been examined electron microscopically in transmission (TEM), scanning-transmission (STEM) and scanning (SEM) modes for the surface appearance of the secretory granules in tissue sections. Cryofixed and cryosectioned tissue showed only slightly protruding granule profiles which had a smooth surface. Cryofixed, freeze-dried and Epon embedded pituitaries, on the other hand, demonstrated swollen and furrowed surfaces over the granules after contact with water. This topography could also be seen after glutaraldehyde fixation but less after post-fixation in OsO4. The surface alterations in the sections of pituitary secretory granules are thought to be due to differences in the homogeneity of the resin infiltration, leaving resin-free openings where water can enter. It also seems probable that the Epon resin is more influenced by water than has been previously assumed, based on the findings of efficient elimination of osmium from the granules after incubation of tissue sections in water for only 10 min.  相似文献   

16.
The ammoniacal silver reaction (ASR) for cationic proteins was used as a cytochemical marker for the primary or A granules in the cytoplasm of developing heterophils of chick bone marrow. The presence of the electron-dense particulate reaction product of silver, which is localized in the fully formed rod-shaped A granules, provides a marker by which the A granules could be distinguished from the B granules of similar size and by which the formation and maturation of both granule types could be followed through the developmental stages. Progressive developmental stages were ascertained on the basis of decreasing cell size, increasing condensation and margination of the chromatin, and the number and morphology of the granules; the stages were divided into promyelocyte, myelocyte, metamyelocyte and heterophil. During the promyelocyte stage, the first appearance of the electron-dense, membrane-bound, spherical granules (0.3--1.0 micrometer in diameter) is observed in the vicinity of an extensive Golgi complex. They occur in a cytoplasm containing rough-surfaced endoplasmic reticulum, ribosomal clusters, centrioles, mitochondria, microtubules, as well as the membranes, saccules, vesicles and vacuoles of the Golgi complex. These granules are considered as primary but their presence as the only granule type appears very brief. The ASR reaction product is first detected on the surface of these primary granules in late promyelocytes or myelocytes. The secondary or B granule, devoid of reaction for cationic protein at all stages, appears as a condensing vacuole in promyelocytes, but after some A granules are already present. The vacuole contents condense to form the B granules which are 0.1--0.6 micrometer in diameter, often oval-shaped, and contain a loose filamentous material surrounded by a membrane. Tertiary C granules or lysosomes appear during the myelocyte stage as dense core vesicles (0.1--0.2 micrometer in diameter) negative for cationic protein.  相似文献   

17.
Secretogranin III (SgIII) is one of the acidic secretory proteins, designated as granins, which are specifically expressed in neuronal and endocrine cells. To clarify its precise distribution in the anterior lobe of the rat pituitary gland, we raised a polyclonal antiserum against rat SgIII for immunocytochemical analyses. By immunohistochemistry using semithin sections, positive signals for SgIII were detected intensely in mammotropes and thyrotropes, moderately in gonadotropes and corticotropes, but not in somatotropes. The distribution pattern of SgIII in the pituitary gland was similar to that of chromogranin B (CgB), also of the granin protein family, suggesting that the expressions of these two granins are regulated by common mechanisms. The localization of SgIII in endocrine cells was confirmed by immunoelectron microscopy. In particular, secretory granules of mammotropes and thyrotropes were densely and preferentially co-labeled for SgIII and CgB in their periphery. Moreover, positive signals for SgIII were occasionally found in cells containing both prolactin and TSH in secretory granules. These lines of evidence suggest that SgIII and CgB are closely associated with the secretory granule membrane and that this membrane association might contribute to gathering and anchoring of other soluble constituents to the secretory granule membrane.  相似文献   

18.
A very similar ultrastructure has been attributed to pancreatic polypeptide and somatostatin cells in chickens. In order to characterize any possible differences between them, cells shown to be immunoreactive for these hormones in semi-thin sections of chick pancreas were identified in adjacent thin sections prepared for conventional electron microscopy. In this way the ultrastructural features of the immunoreactive cells could be determined. In general, in somatostatin-immunoreactive cells, granule profiles are almost exclusively round, whereas in pancreatic polypeptide cells there are elongate as well round profiles. Within cells of both types the electron density of the granule matrix varies from one granule to another, but the range of density is greater in pancreatic polypeptide granules. The latter are slightly smaller than somatostatin granules.  相似文献   

19.
Summary A very similar ultrastructure has been attributed to pancreatic polypeptide and somatostatin cells in chickens. In order to characterize any possible differences between them, cells shown to be immunoreactive for these hormones in semi-thin sections of chick pancreas were identified in adjacent thin sections prepared for conventional electron microscopy. In this way the ultrastructural features of the immunoreactive cells could be determined. In general, in somatostatin-immunoreactive cells, granule profiles are almost exclusively round, whereas in pancreatic polypeptide cells there are elongate as well as round profiles. Within cells of both types the electron density of the granule matrix varies from one granule to another, but the range of density is greater in pancreatic polypeptide granules. The latter are slightly smaller than somatostatin granules.  相似文献   

20.
Recent studies have suggested that the morphological characteristics of secretory granules contained within endocrine cells and nerves may be determined largely by their chemical composition. The use of the immunogold staining (IGS) method, which is based on the adsorption of colloidal gold to immunoglobulins, has been used in our laboratory to demonstrate a wide range of intracellular antigens at both the light and electron microscope levels. In this study we have applied a modification of the IGS method for the simultaneous detection of two separate antigens in a single tissue section, using a variety of region-specific antisera to different peptides. Peptide antisera were raised in rabbits or in guinea pigs and these were applied simultaneously or sequentially to grid-mounted ultrathin tissue sections. Antigenic sites were visualized at the electron microscope level using antisera raised in goats, adsorbed to gold particles of 12, 20, or 40 nm. Using this technique we have attempted to investigate the coexistence of multiple antigens in single tissue sections, in particular in single granules; the topographic distribution of molecular forms within one single granule or granule population; the heterogeneity of peptidergic neurons and also the heterogeneity of peptide content in morphologically similar granules. The double immunogold staining procedures described here have proved to be extremely effective for the simultaneous ultrastructural localization of two antigens (peptide-peptide; peptide-propeptide) on a single tissue section. The further development of this technique may provide useful information on neuroendocrine cell dynamics in normal and diseased states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号