首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradation experiments with radioactively labeled trichloroethylene showed that 32% of the radioactive carbon was converted to glyoxylic acid, dichloroacetic acid and trichloroacetic acid and that the same percentage was converted to CO2 and CO after 140 h of incubation by a pure culture of a type II methane-utilizing bacterium, Methylocystis sp. strain M, isolated from a mixed culture, MU-81, in our laboratory. In contrast, these water-soluble (14C)trichloroethylene degradation products were completely or partially degraded further and converted to CO2 by the MU-81 mixed culture. This phenomenon was attributed to the presence of a heterotrophic bacterium (strain DA4), which was identified as Xanthobacter autotrophicus, in the MU-81 culture. The results indicate that the heterotrophic bacteria play an important role in complete trichloroethylene degradation by methanotrophs.  相似文献   

2.
Methanogenesis from furfural by defined mixed cultures   总被引:1,自引:0,他引:1  
Methanogenesis from furfural by defined mixed cultures was studied. Under sulfate-reducing conditions, a Desulfovibrio strain was used as the furfural-degrading species producing acetic acid. This sulfate-reducing bacterium (SRB) Desulfovibrio strain B is an incomplete oxidizer, unable to carry out the terminal oxidation of organic substrates, leaving acetic acid as the end product. Introduction of acetate-utilizing methanogenic archaeon Methanosarcina barkeri 227 converted acetic acid to methane. This well-defined mixed consortium used furfural as its sole source of carbon and converted it to methane and CO2. In the mixed culture, when a methanogen inhibitor was used in the culture medium, furfural was converted to acetic acid by the Desulfovibrio strain B, but acetic acid did not undergo further metabolism. On the other hand, when the growth of Desulfovibrio in the consortium was suppressed with a specific SRB inhibitor, namely molybdate, furfural was not degraded. Thus, the metabolic activities of both Desulfovibrio strain B and M. barkeri 227 were essential for the complete degradation of furfural. Received: 15 August 2001 / Accepted: 20 September 2001  相似文献   

3.
Ring cleavage and degradative pathway of cyanuric acid in bacteria.   总被引:11,自引:0,他引:11       下载免费PDF全文
The degradative pathway of cyanuric acid [1,3,5-triazine-2,4,6(1H,3H,5H)-trione] was examined in Pseudomonas sp. strain D. The bacterium grew with cyanuric acid, biuret, urea or NH4+ as sole source of nitrogen, and each substrate was entirely metabolized concomitantly with growth. Enzymes from strain D were separated by chromatography on DEAE-cellulose and three reactions were examined. Cyanuric acid (1 mol) was converted stoichiometrically into 1.0 mol of CO2 and 1.1 mol of biuret, which was conclusively identified. Biuret (1 mol) was converted stoichiometrically into 1.1 mol of NH4+, about 1 mol of CO2 and 1.0 mol of urea, which was conclusively identified. Urea (1 mol) was converted into 1.9 mol of NH4+ and 1.0 mol of CO2. The reactions proceeded under aerobic or anoxic conditions and were presumed to be hydrolytic. Data indicate that the same pathway occurred in another pseudomonad and a strain of Klebsiella pneumoniae.  相似文献   

4.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor.  相似文献   

5.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the Methylosinus trichosporium OB3b 5S RNA sequence. A type II methanotrophic bacterium, isolated in pure culture from the bioreactor, synthesized soluble methane monooxygenase during growth in a copper-limited medium and was also capable of rapid trichloroethylene oxidation. The bacterium contained the gene that encodes the soluble methane monooxygenase B component on an AseI restriction fragment identical in size to a restriction fragment present in AseI digests of DNA from bacteria in the mixed culture. The sequence of the 16S rRNA from the pure culture was found to be 92 and 94% homologous to the 16S rRNAs of M. trichosporium OB3b and M. sporium, respectively. Both the pure and mixed cultures oxidized naphthalene to naphthol, indicating the presence of soluble methane monooxygenase. The mixed culture also synthesized soluble methane monooxygenase, as evidenced by the presence of proteins that cross-reacted with antibodies prepared against purified soluble methane monooxygenase components from M. trichosporium OB3b on Western blots (immunoblots). It was concluded that a type II methanotrophic bacterium phylogenetically related to Methylosinus species synthesizes soluble methane monooxygenase and is responsible for trichloroethylene oxidation in the bioreactor.  相似文献   

6.
朱慧  符波  鲁帅领  刘宏波  刘和 《微生物学通报》2018,45(11):2320-2330
【背景】同型产乙酸菌是一类利用乙酰辅酶A途径固定CO_2合成自身细胞物质并生成乙酸、乙醇等代谢产物的厌氧菌群,其分布广泛、种类繁多且代谢多样。深入研究同型产乙酸菌菌株的代谢能力及特性,对探索该种群的生理生化特性及其环境作用至关重要。【目的】研究一株同型产乙酸菌Clostridium sp. BXX的最适培养条件及其自养与异养生长特性。【方法】设置BXX菌株培养温度10-55°C、初始pH 6.0-9.0、NaCl浓度0-2.0%、不同氮源,测定菌体细胞含量和产物生成浓度,确定菌株最适培养条件。研究BXX菌株分别以H_2/CO_2、合成气、CO、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚、甘油、丙酮酸和乳酸为底物时的底物消耗、产物生成、菌体细胞含量和pH等,探究其自养和异养生长特性。【结果】BXX菌株的最适培养温度为30°C,初始pH为7.0,NaCl浓度为1.0%,氮源为酵母粉。BXX菌株能以H2/CO2、合成气、葡萄糖、1,2-丙二醇、甲酸钠、乙二醇甲醚和甘油为底物生长,不能以CO、丙酮酸或乳酸为底物生长。【结论】BXX菌株既能自养生长产乙酸,又能异养生长产乙醇。BXX菌株是乙酸发酵的优良菌种资源,有较好的工业应用潜力。  相似文献   

7.
The thermophilic homoacetogenic bacterium Moorella sp. strain HUC22-1 ferments glyoxylate to acetate roughly according to the reaction 2 glyoxylate --> acetate + 2 CO(2). A batch culture with glyoxylate and yeast extract yielded 11.7 g per mol of cells per substrate, which was much higher than that obtained with H(2) plus CO(2). Crude extracts of glyoxylate-grown cells catalyzed the ADP- and NADP-dependent condensation of glyoxylate and acetyl coenzyme A (acetyl-CoA) to pyruvate and CO(2) and converted pyruvate to acetyl-CoA and CO(2), which are the key reactions of the malyl-CoA pathway. ATP generation was also detected during the key enzyme reactions of this pathway. Furthermore, this bacterium consumed l-malate, an intermediate in the malyl-CoA pathway, and produced acetate. These findings suggest that Moorella sp. strain HUC22-1 can generate ATP by substrate-level phosphorylation during glyoxylate catabolism through the malyl-CoA pathway.  相似文献   

8.
We analyzed the kinetics and metabolic pathways of trichloroethylene and 1,1,1-trichloroethane degradation by the ethane-utilizing Mycobacterium sp. TA27. The apparent Vmax and Km of trichloroethylene were 9.8 nmol min(-1) mg of cells(-1) and 61.9 microM, respectively. The apparent Vmax and Km of 1,1,1-trichloroethane were 0.11 nmol min(-1) mg of cells(-1) and 3.1 microM, respectively. 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid were detected as metabolites of trichloroethylene. 2,2,2-trichloroethanol, trichloroacetic acid, and dichloroacetic acid were also detected as metabolites of 1,1,1-trichloroethane. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid, chloral, and dichloroacetic acid derived from the degradation of 3.60 micromol trichloroethylene were 0.16 micromol (4.4%), 0.11 micromol (3.1%), 0.02 micromol (0.6%), and 0.02 micromol (0.6%), respectively. The amounts of 2,2,2-trichloroethanol, trichloroacetic acid and dichloroacetic acid derived from the degradation of 1.73 micromol 1,1,1-trichloroethane were 1.48 micromol (85.5%), 0.22 micromol (12.7%), and 0.02 micromol (1.2%), respectively. More than 90% of theoretical total chloride was released in trichloroethylene degradation. Chloral and 2,2,2-trichloroethanol were transformed into each other, and were finally converted to trichloroacetic acid, and dichloroacetic acid. Trichloroacetic acid and dichloroacetic acid were not degraded by strain TA27.  相似文献   

9.
A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment.  相似文献   

10.
A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.  相似文献   

11.
J H Lobos  T K Leib    T M Su 《Applied microbiology》1992,58(6):1823-1831
A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified as 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.  相似文献   

12.
Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations.  相似文献   

13.
The rate of CO conversion by a pure culture of a thermophilic CO-oxidizing, H2-producing bacterium Carboxydocella sp. strain 1503 was determined by the radioisotopic method. The overall daily uptake of 14CO by the bacterium was estimated at 38-56 micromol CO per 1 ml of the culture. A radioisotopic method was developed to separate and quantitatively determine the products of anaerobic CO conversion by microbial communities in hot springs. The new method was first tested on the microbial community from a sample obtained from a hot spring in Kamchatka. The potential rate of CO conversion by the anaerobic microbial community was found to be 40.75 nmol CO/cm3 sediment per day. 85% of the utilized 14CO was oxidized to carbon dioxide; 14.5% was incorporated into dissolved organic matter, including 0.2% that went into volatile fatty acids; 0.5% was used for cell bio mass production; and only just over 0.001% was converted to methane.  相似文献   

14.
A bacterium, strain SKN, that was able to utilize saccharin as the sole source of carbon and energy for aerobic growth, was enriched and isolated from communal sewage. The isolate was identified as a strain of Sphingomonas xenophaga. Saccharin was quantitatively converted to cell material, sulfate, ammonium and, presumably, CO(2). The specific rate of saccharin-dependent oxygen uptake during growth reached a maximum before the culture entered the stationary phase and then fell to undetectable levels. Saccharin was degraded only in the presence of molecular oxygen. Catechol was detected as an intermediate during degradation of saccharin in whole cells and catechol 1,2-dioxygenase was expressed inducibly during growth with saccharin. There was an apparent requirement of 2 mol O(2)/mol saccharin to remove the substituents on the ring and to cleave the ring. We presume that S. xenophaga SKN synthesizes a multi-component saccharin dioxygenase that simultaneously cleaves off both vicinal substituents from the aromatic ring to yield catechol and the undefined precursor of CO(2) as well as sulfate and ammonium ions.  相似文献   

15.
A-two stage culture method of hydrogen-oxidizing bacterium, Alcaligenes eutrophus, is used to produce poly-D-3-hydroxybutyrate, P(3HB) from CO2, O2, and H2 without using a very high oxygen transfer rate while maintaining the O2 concentration in gas phase below 6.9 (v/v)% to prevent detonation of the gas mixture. The two-stage method consists of a heterotrophic culture using fructose as carbon source for exponential cell growth and an autotrophic culture for P(3HB) accumulation. We investigated the use of acetic acid as a cheaper carbon source than fructose for the heterotrophic culture in the two-stage method. However, the acetate concentration in the culture system must be maintained at 1.0 g. dm-3 since its inhibitory effect on the cell growth is very strong. Then, high cell density cultivation of A. eutrophus was investigated by pH-stat continuous feeding of acetic acid to control acetate concentration. As a result, acetate concentration was automatically maintained around 1.0 g. dm-3 by using a feed with a composition in CH3COOH/CH3COONH4/KH2PO4 molar ratio of 5:1:0.084. Cell concentration increased to 48.6 g. dm-3 after 21 h of cultivation. The cell mass grown in the fed-batch culture on acetic acid was useful for P(3HB) production from CO2 in the subsequent autotrophic culture stage. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

16.
A bacterium that utilizes 2,4,6-tribromophenol (2,4,6-TBP) as sole carbon and energy source was isolated from soil contaminated with brominated pollutants. This bacterium, designated strain TB01, was identified as an Ochrobactrum species. The organism degraded 100 microM of 2,4,6-TBP within 36 h in a growing culture. In addition, it released 3 mol of bromine ions from 1 mol of 2,4,6-TBP during the complete degradation of 2,4,6-TBP in a resting cell assay. Moreover, cells grown on 2,4,6-TBP degraded 2,6-dibromophenol (2,6-DBP), 4-bromophenol (4-BP), 2,4,6-trichlorophenol (2,4,6-TCP) and phenol. Metabolic intermediates were detected in the reaction mixture of an in vitro assay for 2,4,6-TBP, and they were identified as 2,4-DBP and 2-BP. NADH was required for the debromination of 2,4,6-TBP. These results suggest that 2,4,6-TBP is converted to phenol through sequential reductive debromination reactions via 2,4-DBP and 2-BP by this strain.  相似文献   

17.
三氯乙烯降解菌FT17的分离、鉴定及其降解特性研究   总被引:2,自引:0,他引:2  
采用水-硅油双相系统, 从辽河流域浑河沈阳段底泥中筛选得到一株三氯乙烯降解菌FT17。综合形态特征、生理生化特征、16S rRNA Blast分析和系统发育分析结果, 将该菌株鉴定为Sporosarcina ginsengisoli。菌株FT17最适生长温度为34°C, 最适生长pH为7.8。苯酚作为共代谢基质可以促进该菌株对三氯乙烯的降解。该菌株的三氯乙烯降解酶在胞内和胞外均存在。采用两种质粒提取方法对该菌株进行质粒检测, 结果均没有发现质粒条带, 推测该菌株的三氯乙烯降解基因位于染色体上。  相似文献   

18.
Melamine has recently been recognized as a food contaminant with adverse human health effects. Melamine contamination in some crops arises from soil and water pollution from various causes. To remove melamine from the polluted environment, a novel bacterium, Nocardioides sp. strain ATD6, capable of degrading melamine was enriched and isolated from a paddy soil sample. The enrichment culture was performed by the soil-charcoal perfusion method in the presence of triazine-degrading bacteria previously obtained. Strain ATD6 degraded melamine and accumulated cyanuric acid and ammonium, via the intermediates ammeline and ammelide. No gene known to encode for triazine-degrading enzymes was detected in strain ATD6. A mixed culture of strain ATD6 and a simazine-degrading Methyloversatilis sp. strain CDB21 completely degraded melamine, but the degradation rate of cyanuric acid was slow. The degradation of melamine and its catabolites by the mixed culture was greatly enhanced by including Bradyrhizobium japonicum strain CSB1 in the inoculum and adding ethanol to the culture medium. The melamine-degrading consortium consisting of strains ATD6, CDB21, and CSB1 appears to be potentially safer than other known melamine-degrading bacteria for the bioremediation of farmland and other contaminated sites, as no known pathogens were included in the consortium.  相似文献   

19.
Transition of chemolithotrophic Ferrobacillus ferrooxidans to organotrophy occurred after 60 hr of incubation in an organic medium. Three distinct phases, based on metabolic activities of cells, were observed during the course of transition. Conversion of cellular nutrition to organotrophy resulted in a gradual loss of Fe(2+) oxidation and cessation of CO(2) fixation. These changes were concomitant with a rapid increase in uptake of glucose and phosphate during the latter part of transition period. The outcome of transition was governed by the pH of the medium, temperature of incubation, availability of oxygen, age of the chemolithotrophic cells, and the type of energy and carbon source available to the bacterium. Presence or absence of p-aminobenzoic acid and Fe(2+) ions did not influence transition of cells. A defined medium containing glucose, mineral salts, and p-aminobenzoic acid at pH 2.5 was found to be most suitable for transition and for culture of heterotrophic convertants. Maximum growth rate of the heterotrophic cells was attained with vigorous aeration at 35 C. The bacterium could be cultured on a variety of organic compounds, including complex organic media, provided they were used in low concentrations. Serological studies on autotrophic cells and the heterotrophic convertant have shown a definite antigenic relationship between the two cell types.  相似文献   

20.
A syntrophic consortium was enriched in a basal medium containing cinnamate as the carbon and energy source. It was found to consist of three morphologically distinct microbes, viz., a short, rod-shaped, non-motile bacterium with distinctly pointed ends, Papillibacter cinnamivorans; a rod-shaped, motile bacterium with rounded ends, Syntrophus sp.; and a methanoarchaeon, Methanobacterium sp. This methanogen was then replaced by a collection strain of Methanobacterium formicicum. A syntrophic interdependency of the three partners of the consortium was observed during growth on cinnamate. In the presence of bromoethanesulfonic acid (BESA), cinnamate was transformed to benzoate, whereas under methanogenic conditions without BESA, cinnamate was first transformed to benzoate via beta-oxidation and subsequently completely degraded into acetate, CH(4), and CO(2). Papillibacter cinnamivorans was responsible for benzoate production from cinnamate, whereas a syntrophic association between Syntrophus sp. and the methanogen degraded benzoate to acetate, CH(4), and CO(2). A new anaerobic degradation pathway of cinnamate into benzoate via beta-oxidation by a pure culture of P. cinnamivorans is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号