首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The rate-limiting enzymes in polyamine biosynthesis, ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC), are negatively regulated by the polyamines spermidine and spermine. In the present work the spermidine synthase inhibitor S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and the spermine synthase inhibitor S-methyl-5'-methylthioadenosine (MMTA) were used to evaluate the regulatory role of the individual polyamines. Treatment of Ehrlich ascites-tumour cells with AdoDATO caused a marked decrease in spermidine content together with an accumulation of putrescine and spermine. Treatment with MMTA, on the other hand, gave rise to a marked decrease in spermine, with a simultaneous accumulation of spermidine. A dramatic increase in the activity of AdoMetDC, but not of ODC, was observed in MMTA-treated cells. This increase appears to be unrelated to the decrease in spermine content, because a similar rise in AdoMetDC activity was obtained when AdoDATO was given in addition to MMTA, in which case the spermine content remained largely unchanged. Instead, we show that the increase in AdoMetDC activity is mainly due to stabilization of the enzyme, probably by binding of MMTA. Treatment with AdoDATO had no effects on the activities of ODC and AdoMetDC, even though it caused a precipitous decrease in spermidine content. The expected decrease in spermidine-mediated suppression of ODC and AdoMetDC was most probably counteracted by the simultaneous increase in spermine. The combination of AdoDATO and MMTA caused a transient rise in ODC activity. Concomitant with this rise, the putrescine and spermidine contents increased, whereas that of spermine remained virtually unchanged. The increase in ODC activity was due to increased synthesis of the enzyme. There were no major effects on the amount of AdoMetDC mRNA by treatment with the inhibitors, alone or in combination. However, the synthesis of AdoMetDC was slightly stimulated in cells treated with MMTA or AdoDATO plus MMTA. The present study demonstrates that regulation of neither ODC nor AdoMetDC is a direct function of the polyamine structure. Instead, it appears that the biosynthesis of the polyamines is feedback-regulated by the various polyamines at many different levels.  相似文献   

3.
Synthesis of S-adenosylmethionine decarboxylase (AdoMetDC), a key regulated enzyme in the pathway of polyamine biosynthesis, is feedback-controlled at the level of translation by spermidine and spermine. The peptide product of an upstream open reading frame (uORF) in the mRNA is solely responsible for polyamine regulation of AdoMetDC translation. Using a primer extension inhibition assay and in vitro protein synthesis reactions, we found ribosomes paused at or close to the termination codon of the uORF. This pause was greatly diminished with the altered uORFs' sequences that abolish uORF regulation in vivo. The half-life of the ribosome pause was related to the concentration of polyamines present but was unaffected by magnesium concentration. Furthermore, inhibition of translation initiation at a reporter gene placed downstream of the AdoMetDC uORF directly correlated with the stability of the ribosome pause at the uORF. These observations are consistent with a model in which regulation of ribosome pausing at the uORF by polyamines controls ribosome access to the downstream AdoMetDC reading frame.  相似文献   

4.
Regulation of polyamine metabolism by translational control   总被引:1,自引:0,他引:1  
Perez-Leal O  Merali S 《Amino acids》2012,42(2-3):611-617
  相似文献   

5.
6.
In mammals, control of S-adenosylmethionine decarboxylase (AdoMetDC) translation is one component of a feedback network that regulates intracellular levels of the polyamines, spermidine, and spermine. AdoMetDC mRNA from mammals contains a highly conserved upstream open reading frame (uORF) within its leader sequence that confers polyamine-regulated suppression of translation on the associated downstream cistron. This regulation is mediated through an interaction that depends on the amino acid sequence of the uORF-encoded hexapeptide. It remains to be shown whether polyamines participate directly in this interaction or indirectly through a specialized signal transduction pathway. We show that Saccharomyces cerevisiae does not have a uORF associated with its AdoMetDC gene (SPE2) and that ribosome loading on the SPE2 mRNA is not positively influenced by polyamine depletion, as it is in mammalian cells. Nevertheless, the mammalian AdoMetDC uORF, when introduced into a polyamine auxotroph of yeast, conferred polyamine regulation of both translational efficiency and ribosome loading on the associated mRNA. This regulatory activity depended on the amino acid sequence encoded by the fourth and fifth codons of the uORF, as in mammalian cells. The fact that the regulatory properties of this mammalian translational control element are quite similar in both mammalian and yeast cells suggests that a specialized signal transduction pathway is not required. Rather, it seems likely that polyamines may be directly participating in an interaction between the uORF-encoded peptide and a constitutive component of the translation machinery, which leads to inhibition of ribosome activity.  相似文献   

7.
Cell growth and differentiation require the presence of optimal concentrations of polyamines. Ornithine decarboxylase (ODC) catalyses the first and rate-controlling step in polyamine synthesis. In studies using cultures of Ehrlich ascites-tumour cells, we have shown that the expression of ODC is subject to feedback regulation by the polyamines. A decrease in the cellular polyamine concentration results in a compensatory increase in the synthesis of ODC, whereas an increase in polyamine concentration results in suppression of ODC synthesis. These changes in ODC synthesis were attributed to changes in the efficiency of ODC mRNA translation, because the steady-state amount of ODC mRNA remained constant. We now show that the number of ribosomes associated with ODC mRNA is low, and that the increase in ODC mRNA translation takes place without a shift in the distribution of ODC mRNA towards larger polysomes. This finding indicates that the polyamines regulate the efficiency of ODC mRNA translation by co-ordinately affecting the rates of initiation and elongation. By analysing ODC mRNA translation in vitro, using a rabbit reticulocyte lysate, polyadenylated RNA from a cell line with an amplified ODC gene, and a monospecific anti-ODC antibody, we also show that spermidine, but not putrescine, exerts a direct regulatory effect on ODC synthesis.  相似文献   

8.
Different stages of liver regeneration are regulated by a variety of factors such as the liver growth associated protein ALR, augmenter of liver regeneration. Furthermore, small molecules like polyamines were proven to be essential for hepatic growth and regeneration. Therefore, using primary human hepatocytes in vitro we investigated the effect of ALR on the biosynthesis of polyamines. We demonstrated by HPLC analysis that recombinant ALR enhanced intracellular hepatic putrescine, spermidine, and spermine levels within 9-12h. The activation of polyamine biosynthesis was dose dependent with putrescine showing the strongest increase. Additionally, ALR treatment induced mRNA expression of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase, both key enzymes of polyamine biosynthesis. Further, ALR induced c-myc mRNA expression, a regulator of ODC expression, and therefore we assume that ALR exerts its liver regeneration augmenting effects through stimulation of its signalling pathway leading in part to enhanced polyamine synthesis.  相似文献   

9.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.  相似文献   

10.
Polyamine-biosynthesis activity is known to be negatively regulated by intracellular polyamine pools. Accordingly, treatment of cultured L1210 cells with 10 microM-spermine rapidly and significantly lowered ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) activities in a sequential manner. By contrast, treatment for 48 h with 10 microM of the unsaturated spermine analogue 6-spermyne lowered AdoMetDC activity, but not ODC activity. An initial decrease in ODC activity at 2 h was attributed to a transient increase in free intracellular spermidine and spermine brought about through their displacement by the analogue. Thereafter, ODC activity recovered steadily to control values as 6-spermyne pools increased and spermidine and spermine pools decreased owing to analogue suppression of AdoMetDC activity. The apparent ability of 6-spermyne to regulate AdoMetDC, but not ODC, activity suggests an interesting structure-function correlation and demonstrates that the typical co-regulation of these enzyme activities can be dissociated. This, in turn, may reflect the existence of independent regulatory binding sites for the two enzymes.  相似文献   

11.
Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.  相似文献   

12.
Ornithine decarboxylase (ODC) is the first enzyme in polyamine biosynthesis in numerous living organisms, from bacteria to mammalian cells. Its control is under negative feedback regulation by the end products of the pathway. In dimorphic fungi, ODC activity and therefore polyamine concentrations are related to the morphogenetic process. From the fission yeast Schizosaccharomyces pombe to human, polyamines induce antizyme synthesis which in turn inactivates ODC. This is hydrolyzed by the 26S proteasome without ubiquitination. The regulatory mechanism of antizyme on polyamines is conserved, although to date no antizyme homology has been identified in some fungal species. The components that are responsible for regulating polyamine levels in cells and the current knowledge of ODC regulation in dimorphic fungi are presented in this review. ODC degradation is of particular interest because inhibitors of this pathway may lead to the discovery of novel antifungal drugs.  相似文献   

13.
Ma JM  He JT  Ning QJ 《生理科学进展》2007,38(2):106-110
抗酶(antizyme)是当细胞内多胺水平升高时刺激机体合成的一种小分子量调节蛋白,能特异性地与鸟氨酸脱羧酶(omithine decarboxylase,ODC)结合,经泛素非依赖途径被26S蛋白酶体降解,从而使多胺合成减少;抗酶还可以调节多胺转运,以稳定细胞内多胺水平。近年来随着生物技术的不断发展,对抗酶的认识也逐步深入,本文综述了抗酶家族、合成、作用及定位等方面的研究进展。  相似文献   

14.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescine, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

15.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

16.
17.
18.
R Autelli  I Holm  O Heby  L Persson 《FEBS letters》1990,260(1):39-41
The rate-controlling enzyme in polyamine synthesis, ornithine decarboxylase (ODC), is subject to feedback regulation by the polyamines at the level of translation. In the present study we used a cell-free translation system to further investigate the mechanism by which this regulation occurs. Lysates of ODC-overproducing cells were capable of synthesizing large amounts of ODC. The degree of initiation was poor in the lysates and the synthesis of ODC was mainly a result of continued elongation of peptide chains on pre-initiated ribosomes. By determining the amount of ODC produced in the lysate, we obtained an estimate of the number of ribosomes that were actively translating ODC mRNA at the moment of lysis. Using this polysomal run-off assay we demonstrated that the polyamine-mediated regulation of ODC synthesis occurs without any change in the number of ribosomes associated with the message. This finding indicates that the polyamines exert a coordinate effect on initiation and elongation.  相似文献   

19.
20.
Treatment of L1210 cells with either of two inhibitors of S-adenosylmethionine decarboxylase (AdoMetDC), namely 5'-deoxy-5'-[N-methyl-N-[2-(amino-oxy)ethyl])aminoadenosine or 5'-deoxy-5'-[N-methyl-N-(3-hydrazinopropyl)]aminoadenosine, produced a large increase in the amount of ornithine decarboxylase (ODC) protein. The increased enzyme content was due to a decreased rate of degradation of the protein and to an increased rate of synthesis, but there was no change in its mRNA content. The inhibitors led to a substantial decline in the amounts of intracellular spermidine and spermine, but to a big increase in the amount of putrescine. These results indicate that the content of ODC is negatively regulated by spermidine and spermine at the levels of protein translation and turnover, but that putrescine is much less effective in bringing about this repression. Addition of either spermidine or spermine to the cells treated with the AdoMetDC inhibitors led to a decrease in ODC activity, indicating that either polyamine can bring about this effect, but spermidine produced effects at concentrations similar to those found in the control cells and appears to be the physiologically important regulator. The content of AdoMetDC protein (measured by radioimmunoassay) was also increased by these inhibitors, and a small increase in its mRNA content was observed, but this was insufficient to account for the increase in protein. A substantial stabilization of AdoMetDC occurred in these cells, contributing to the increased enzyme content, but an increase in the rate of translation cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号