首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational regulation of ornithine decarboxylase by polyamines   总被引:12,自引:0,他引:12  
L Persson  I Holm  O Heby 《FEBS letters》1986,205(2):175-178
  相似文献   

2.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

3.
Management of polyamine pools and the regulation of ornithine decarboxylase   总被引:1,自引:0,他引:1  
The management of polyamine synthesis and polyamine pools differs fundamentally from that of most other small molecular-weight endproducts. The polyamines are vital to growth and important cellular functions, but they are toxic in excess. I argue here that their multivalent cationic character, leading to binding to cell constituents, precludes fluent feedback inhibition of synthesis. This has led to the development of elaborate alternative regulatory mechanisms controlling ornithine decarboxylase, the key initial enzyme of the pathway. Poorly regulated polyamine synthesis and the toxicity of polyamines impose upon cells a need to control uptake and to dispose of excess polyamines. Recent data on polyamine transport suggest unorthodox mechanisms of accomplishing these functions.  相似文献   

4.
5.
Unlike other eukaryotes, which can synthesize polyamines only from ornithine, plants possess an additional pathway from arginine. Occasionally non-enzymatic decarboxylation of ornithine could be detected in Arabidopsis extracts; however, we could not detect ornithine decarboxylase (ODC; EC 4. 1.1.17) enzymatic activity or any activity inhibitory to the ODC assay. There are no intact or degraded ODC sequences in the Arabidopsis genome and no ODC expressed sequence tags. Arabidopsis is therefore the only plant and one of only two eukaryotic organisms (the other being the protozoan Trypanosoma cruzi) that have been demonstrated to lack ODC activity. As ODC is a key enzyme in polyamine biosynthesis, Arabidopsis is reliant on the additional arginine decarboxylase (ADC; EC 4.1.1.9) pathway, found only in plants and some bacteria, to synthesize putrescine. By using site-directed mutants of the Arabidopsis ADC1 and heterologous expression in yeast, we show that ADC, like ODC, is a head-to-tail homodimer with two active sites acting in trans across the interface of the dimer. Amino acids K136 and C524 of Arabidopsis ADC1 are essential for activity and participate in separate active sites. Maximal activity of Arabidopsis ADC1 in yeast requires the presence of general protease genes, and it is likely that dimer formation precedes proteolytic processing of the ADC pre-protein monomer.  相似文献   

6.
The polyamines are essential cellular components for growth. Control of a key regulated enzyme of polyamine biosynthesis, ornithine decarboxylase (ODC), as a function of growth, is an area of intense interest. A unique regulatory property of ODC is the short half-life of the protein, which has been suggested to be an important factor in rapid activation of polyamine biosynthesis after cells are mitogenically stimulated. In this paper, it is argued that the biological significance of the short half-life of ODC is unrelated to the rate of its induction to a new steady state by growth factors, which is in fact limited by the relatively long half-life of the ODC mRNA. Instead, I suggest that the rapid turnover of ODC protein becomes of significance when cells cease growth and expeditious downregulation of the enzyme is important in preventing polyamine overproduction, which would result in cytotoxicity in the arrested cells. Although mitogenic activation of ODC expression has been studied extensively, there is very little known about the mechanisms controlling downregulation of polyamine biosynthesis during the arrest of animal cell growth. These considerations suggest that this would be a fertile area of future inquiry.  相似文献   

7.
It is becoming apparent that control of protein synthesis by metabolites is more common than previously thought. Much of that control is exerted at the level of initiation of mRNA translation, orchestrated by upstream open reading frames (uORFs) and RNA secondary structure. S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in polyamine biosynthesis and both mammalian and plant AdoMetDCs are translationally regulated by uORFs in response to polyamine levels by distinct mechanisms.  相似文献   

8.
Posttranscriptional regulation of ornithine decarboxylase activity   总被引:5,自引:0,他引:5  
We have used a Chinese hamster ovary cell line (DF3) that overproduces ornithine decarboxylase (ODC) to examine various parameters in the cell cycle-dependent regulation of this enzyme. Under a variety of conditions, alterations in the activity of ODC were accompanied by parallel changes in the levels of the protein, as measured by immunologically cross-reactive material (CRM). While putrescine has been known to suppress the induction of ODC, we have found that in DF3 cells 10(-4)M ornithine completely suppresses ODC activity. We also show that the levels of ODC mRNA are not modulated when the levels of ODC activity and CRM change drastically. The data can be interpreted in terms of models involving either an effect of putrescine on the translation of ODC mRNA, or on the activity of a relatively specific protease with ODC as its target.  相似文献   

9.
10.
11.
Flavins in different compartments of effective nodules fromGlycine max cv Maple Arrow xBradyrhizobium japonicum strains were studied by spectrophotometry and chromatographic techniques. Flavins in the peribacteroid space were riboflavin (80%) and FMN (20%), as identified by TLC and HPLC. Flavin concentrations in the soybean root nodule cytoplasm, in the symbiosome space (PBS) and in the cytosol of bacteroids were monitored between 20 and 40 days post infection (d.p.i.) Between the 20th and 29th d.p.i. an at least four times higher flavin/protein ratio was found in PBS of effective nodules compared with the nodule cytoplasm. Between nitrogenase activity in the free-living state and bacterial flavin accumulation, no correlation could be observed. Flavin accumulation is not restricted to an effective symbiosis, as indicated by the analysis of ineffective nodules with strainB. japonicum RH-31 Marburg. Flavin accumulation is absent in uninfected soybean root tissue and in free-living rhizobia, thus indicating that flavin accumulation is a result of symbiotic interaction. Flavin accumulation is also missing in nodules with a hypersensitive response against the bacteria.  相似文献   

12.
13.
The administration of the two dopamine receptor agonists apomorphine (APM) and piribedil (PBD) to rats leads to an increase in ornithine decarboxylase (ODC) activity in the adrenal medulla. In this work, we have tried to elucidate the neural pathways involved in the regulation of this enzyme. The treatments used are: unilateral splanchnicotomy, spinal cord section, intraventricular injection of the neurotoxin 6-hydroxydopamine and section of the brain at various levels. Unilateral splanchnicotomy reduces very significantly the induction of ODC produced by either APM or PBD. Spinal cord section at either of two different levels (T5 or T2) also lowers the response to APM. Intracerebroventricular injection of 6-hydroxydopamine, on the other hand, elevates the mean response to APM, although not to a statistically significant extent. Section of the mesencephalon well below the periaqueductal gray does not alter the response of adrenomedullary ODC to APM. Transection of the diencephalon almost prevents it whereas hypothalamic deafferentation and incomplete diencephalic transection potentiate the effect of this drug. These observations strongly suggest that adrenomedullary ODC activity is predominantly regulated by a central system, originating mainly in the diencephalon-telencephalon and including a facilitatory dopaminergic component.  相似文献   

14.
Definition of the cellular events involved in the production of collagenase by macrophages following activation has revealed prostaglandin E2 (PGE2)- and cAMP-dependent steps. Since ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis, is regulated by cAMP and is associated with certain aspects of protein synthesis, the potential role of this enzyme and its polyamine product, putrescine, in collagenase synthesis was examined. Lipopolysaccharide (LPS) activation of macrophages resulted in a maximal ODC response after 6 to 9 h with a 10- to 12-fold elevation in enzyme activity. This elevation in ODC appeared to be regulated by PGE2 since indomethacin inhibited LPS-induced macrophage ODC levels by 70%. Associated with the indomethacin-mediated inhibition of ODC was a loss of collagenase synthesis. Furthermore, partial restoration of collagenase production in indomethacin-inhibited cultures could be achieved by the addition of putrescine. In additional studies alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC, also inhibited collagenase production when added to LPS-treated macrophages. This inhibition by DFMO could be reversed by the exogenous addition of putrescine. These findings demonstrate that the ODC pathway is an important intracellular component in the sequence of events that lead to macrophage collagenase synthesis.  相似文献   

15.
General properties and relative activities of l-arginine decarboxylase (ADC) (EC 4.1.1.19) and l-ornithine decarboxylase (ODC) (EC 4.1.1.17), two important enzymes in putrescine and polyamine biosynthesis, were investigated in mung bean (Vigna radiata L.) tissues. Both activities increase linearly with increasing concentrations of crude enzyme, but the increase in ADC activity is considerably greater. The decarboxylation reaction is linear for up to 30 to 60 minutes, and both enzymes have a pH optimum of 7.2. alpha-Difluoromethyl-ornithine inhibits ODC activity of excised roots, while increasing ADC activity.High specific activity of both enzymes is detected in terminal buds and leaves, while root and hypocotyl activity is low. Different ADC-to-ODC activity ratios are found in various tissues of mung bean plants. Substantial increase in the activity of both enzymes is detected in incubated sections as compared with intact plants. A comparison of several plant species indicates a wide range of ADC-to-ODC activity ratio.It is suggested that both ADC and ODC are active in plant tissues and that their relative contribution to putrescine biosynthesis is dependent upon the type of tissue and growth process.  相似文献   

16.
Ornithine decarboxylase activity and polyamine levels were determined at various growth phases of Tetrahymena thermophila cultures. Enzyme activity and intracellular polyamines increased in exponentially growing cells and peaked just before the stationary phase. Putrescine was the predominant polyamine and spermidine and spermine concentrations were low throughout. The increase in putrescine level can be totally accounted for by the enzyme activity detected, provided that there is an ample supply of the precursor, L-ornithine.  相似文献   

17.
U R Tipnis  C Skiera 《Cytobios》1989,57(229):101-108
Ornithine decarboxylase activities (ODC) and polyamine levels were determined in five cardiac regions of the rat heart, following daily administration of 1 mg/kg of thyroxine, in the right and left atria, the right and left ventricles and the septum. The thyroxine stimulated ODC activity in all five regions of the heart. Enzyme activity in the left atrium and the septum peaked a day earlier than in other regions and the decline of ODC activity was slower. Putrescine in control animals was present in all regions except the right atrium, where its content was below detectable levels. Following the administration of thyroxine, the putrescine content of the left atrium, the right ventricle and the septum declined, while spermidine and spermine levels remained unchanged. In direct contrast to the other regions of the heart, thyroxine stimulated an increase in polyamines, as well as in weight which occurred exclusively in the left ventricle. These findings suggest a causal relationship between increased polyamines and hypertrophy.  相似文献   

18.
19.
20.
In rat lung and cultured lung vascular cells, hypoxia decreases ornithine decarboxylase (ODC) activity and increases polyamine import. In this study, we used rat cultured pulmonary artery endothelial cells to explore the mechanism of hypoxia-induced reduction in ODC activity and determined whether this event was functionally related to the increase in polyamine import. Two strategies known to suppress proteasome-mediated ODC degradation, lactacystin treatment and use of cells expressing a truncated ODC incapable of interacting with the proteasome, prevented the hypoxia-induced decrease in ODC activity. Interestingly, though, cellular abundance of the 24-kDa antizyme, a known physiological accelerator of ODC degradation, was not increased by hypoxia. These observations suggest that an antizyme-independent ODC degradation pathway contributes to hypoxia-induced reductions of ODC activity. When reductions in ODC activity in hypoxia were prevented by the proteasome inhibitor strategies, hypoxia failed to increase polyamine transport. The induction of polyamine transport in hypoxic pulmonary artery endothelial cells thus seems to require decreased ODC activity as an initiating event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号