首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two diallelic loci in an infinite panmictic population of diploid individuals are modelled. The A/a locus is subject to unidirectional mutation and either multiplicative fertility selection or, equivalently, sex-asymmetric viability selection. The M/m locus acts as a selectively neutral modifier of the mutation rate at A/a. The loci recombine at rate R. If the M/m locus is initially monomorphic, and the A/a locus has reached equilibrium, the fate of a new modifier allele is found to depend not just on its relative effect on mutation but also upon the linkage, R. Each initial equilibrium may be characterized by a critical value of the recombination rate, R*. If 0 less than R* less than 0.5, a sufficiently small "down" modifier of the mutation rate will invade the population when R less than R* whereas a sufficiently small "up" modifier will succeed when R greater than R*. If R* less than 0 or R* greater than 0.5, only mutation reduction may occur. Numerical analysis of 56,000 sample equilibria indicates that mutation rates may be increased, but only when the selection regime is such that the A/a locus would remain polymorphic in the absence of mutation.  相似文献   

2.
Two subpopulations whose different sizes are in a constant ratio interact via migration. The fitness of the diploid organisms is determined by two alleles at a single locus and by the niche the organism is in. The rates of migration depend upon two neutral modifier genes at a second locus. The second modifying allele is introduced into an equilibrium where the first modifying allele is fixed, and where the other two alleles are already polymorphic. It is shown that the new migration modifier is selected for when it reduces migration. The similarity between this result and some recombination modifier models is noted.  相似文献   

3.
The deterministic properties of a two-locus model with mutation and selection have been investigated. The mutation process is unidirectional, and the model is so constructed that the genetic variation at one locus is selectively neutral in the absence of a mutant allele at the other locus. All genotypes with three or four mutant alleles are deleterious, while the double heterozygotes may have the same fitness as the standard genotype. If one of the mutant alleles becomes fixed in the population, then the other locus will show a regular one-locus mutation-selection balance. Such a boundary equilibrium may be unstable or stable in the full two-locus setting. In the symmetric case, which is analyzed in details, the population will either go to one of the two boundary equilibria, or to a fully polymorphic equilibrium at which both the mutant alleles are rare. The origin of reproductive separation between two populations via the fixation of complementary deleterious mutants at different loci, and the fixation of nonfunctional alleles at duplicated loci, are two biological processes which both can be studied with the present model. In the last part of the paper we show how the results from the deterministic analysis can be used to predict how different factors will influence the rates of evolution in these systems.  相似文献   

4.
Polygenic variation can be maintained by a balance between mutation and stabilizing selection. When the alleles responsible for variation are rare, many classes of equilibria may be stable. The rate at which drift causes shifts between equilibria is investigated by integrating the gene frequency distribution W2N II (pq)4N mu-1. This integral can be found exactly, by numerical integration, or can be approximated by assuming that the full distribution of allele frequencies is approximately Gaussian. These methods are checked against simulations. Over a wide range of population sizes, drift will keep the population near an equilibrium which minimizes the genetic variance and the deviation from the selective optimum. Shifts between equilibria in this class occur at an appreciable rate if the product of population size and selection on each locus is small (Ns alpha 2 less than 10). The Gaussian approximation is accurate even when the underlying distribution is strongly skewed. Reproductive isolation evolves as populations shift to new combinations of alleles: however, this process is slow, approaching the neutral rate (approximately mu) in small populations.  相似文献   

5.
The Evolution of the Y Chromosome with X-Y Recombination   总被引:1,自引:0,他引:1       下载免费PDF全文
A. G. Clark 《Genetics》1988,119(3):711-720
A theoretical population genetic model is developed to explore the consequences of X-Y recombination in the evolution of sex chromosome polymorphism. The model incorporates one sex-determining locus and one locus subject to natural selection. Both loci have two alleles, and the rate of classical meiotic recombination between the loci is r. The alleles at the sex-determining locus specify whether the chromosome is X or Y, and the alleles at the selected locus are arbitrarily labeled A and a. Natural selection is modeled as a process of differential viabilities. The system can be expressed in terms of three recurrence equations, one for the frequency of A on the X-bearing gametes produced by females, one for each of the frequency of A on the X- and Y-bearing gametes produced by males. Several special cases are examined, including X chromosome dominance and symmetric selection. Unusual equilibria are found with the two sexes having very different allele frequencies at the selected locus. A significant finding is that the allowance of recombination results in a much greater opportunity for polymorphism of the Y chromosome. Tighter linkage results in a greater likelihood for equilibria with a large difference between the sex chromosomes in allele frequency.  相似文献   

6.
Summary A symmetric viability model for two loci with two alleles at one locus and m alleles at the other is suggested and analyzed. The analysis of the equilibria is complete if the two loci are absolutely linked, while if recombination is allowed the analysis is incomplete. The dynamics of the mode! resemble those of the two locus two allele model, namely that for loose linkage there will be no correlation between the loci and for tight linkage there may be strong correlation. The major caveats to this are: 1. The equilibria stable for tight linkage may belong to an array of different structures dependent on the selection and the number of alleles. 2. If both loci are overdominant in viability, the stable equilibria always contain all alleles segregating in the population; otherwise, the stable equilibria may only be two locus two allele high complementarity equilibria for tight linkage. 3. For intermediate linkage values and special selection values the boundary two locus two allele high complementarity equilibria may be stable simultaneously with the totally polymorphic central point at which there is no association between the loci.Dedicated to the memory of Ove Frydenberg.Research supported in part by a grant from the Danish Natural Science Research Council, a grant from National Science Foundation, U.S.A., and by USPHS grant NIH 10452-09-11.  相似文献   

7.
The structure of multiloci random mating populations is examined. Sufficient conditions for the existence of stable local Hardy-Weinberg equilibria for n loci and an arbitrary number of alleles per locus, are then derived for specified situations under the assumption of multiplicative gene action between loci. It is shown that a stable Hardy-Weinberg equilibrium can not be a local maximum of the mean fitness function with multiplicative gene action between loci. The stability of Hardy-Weinberg type border points and the condition for the increase of newly introduced genes are topics on which some n-loci results are also obtained for an arbitrary number of alleles per locus in systems that allow Hardy-Weinberg equilibria.  相似文献   

8.
On the Origin of Meiotic Reproduction: A Genetic Modifier Model   总被引:2,自引:1,他引:1       下载免费PDF全文
We study the conditions under which a rare allele that modifies the relative rates of meiotic reproduction and apomixis increases in a population in which meiotic reproduction entails selfing as well as random outcrossing. A distinct locus, at which mutation maintains alleles that are lethal in homozygous form, determines viability. We find that low viability of carriers of the lethal alleles, high rates of selfing, dominance of the introduced modifier allele, and lower rates of recombination promote the evolution of meiosis. Meiotic reproduction can evolve even in the absence of linkage between the modifier and the viability locus. The adaptive value of meiotic reproduction depends on the relative viabilities of offspring derived by meiosis and by apomixis, and on associations between the modifier and the viability locus. Meiotic reproduction, particularly under selfing, generates more diverse offspring, including those with very high and very low viability. Elimination of offspring with low viability generates positive associations between enhancers of meiotic reproduction and high viability. In addition, partial selfing generates positive associations in heterozygosity (identity disequilibrium) between the modifier and the viability locus, even in the absence of linkage. The two kinds of associations together can compensate for initial reductions in mean offspring viability under meiotic reproduction.  相似文献   

9.
Evolution at a multiallelic locus under the joint action of migration and viability selection is investigated. Generations are discrete and nonoverlapping. The monoecious, diploid population is subdivided into finitely many panmictic colonies that exchange adult migrants independently of genotype. The forward migration matrix is arbitrary, but time independent and ergodic (i.e., irreducible and aperiodic). Several examples of globally attracting multiallelic equilibria are presented. Migration can cause global fixation even if, without migration, there is a globally attracting multiallelic equilibrium in every colony. Migration can also cause the global fixation of an allele that, without migration, is eliminated in every colony. Without dominance, generically, the number of alleles present at equilibrium cannot exceed the number of colonies. Some general properties and examples of the Levene model are studied in detail. If in each colony there is either no dominance or, without migration, a globally attracting internal equilibrium, then there exists a globally attracting equilibrium with migration. Therefore, if an internal equilibrium exists, it is the global attractor.  相似文献   

10.
A 2-locus model of the evolution of self-incompatibility in a population practicing partial selfing is presented. An allele is introduced at a modifier locus which influences the strength of the rejection reaction expressed by the style in response to antigens recognized in pollen. Two causes of inbreeding depression are investigated. First, offspring viability depends solely on the source (self or non-self) of the fertilizing pollen. Second, offspring viability declines with the expression of recessive deleterious alleles, segregating at a third (disease) locus, which exhibit an imperfect association with antigen alleles. Evolutionary changes occurring at the disease locus are not considered in this study. The condition under which a modifier allele that intensifies the incompatibility reaction increases when rare depends upon the number of antigens, the frequency of recessive deleterious alleles at the disease locus, and the level of association between the antigen locus and the disease locus. It is the improvement of viability among offspring derived by outcrossing, rather than the prevention of self-fertilization, that may represent the primary evolutionary function of genetic incompatibility systems.  相似文献   

11.
This is a study of the formal population genetics of a two locus model where the alleles at one locus are subject to meiotic drive and zygotic selection and the only effect of the other locus is the modification of drive intensity. A complete analytic solution is obtained for a biologically reasonable special case. It is then argued, partially with the aid of computer analysis, that with moderate relaxation of assumptions of the special case, the conclusions derived from that case still hold. These conclusions are that if there is linkage a stable two locus polymorphism can result. There is permanent linkage disequilibrium with the loosing allele at the drive locus in coupling with the suppressor allele at the modifier locus, and the driven allele coupled with the modifier allele which enhances drive. It is suggested that this result explains how the SD system in Drosophila maintains its integrity in natural populations.  相似文献   

12.
Summary A new homoeotic mutant, I127, showing abnormal growths in the head region including homoeotic transformation of eye to genitalia and antenna to leg, was isolated in a screen designed to find new alleles of the tumorous head (tuh-3), mutation. Similarities in the phenotype and genetics of the mutant, and complementation studies with tuh-1; tuh-3, suggest that I127 is indeed an allele of tuh-3. In combination with the first chromosome modifier tuh-1, the mutant is temperature-sensitive during the third larval instar, giving an increased penetrance of the tumorous head phenotype when reared at 25° C as opposed to 18° C. The isolation of further alleles at the tumorous-head locus are essential. The types of morphological defects which can result from mutations at this locus would enable us to establish if this is a complex locus, and if null mutations are lethal during development. The interactions of the tumorous-head gene with first chromosome modifiers and other homoeotic mutations will only be understood if we able to induce a number of mutations at this locus, and as a consequence begin to elucidate the role of the wild-type gene product in normal development.  相似文献   

13.
We explored the evolution of recombination under antagonistic coevolution, concentrating on the equilibrium frequencies of modifier alleles causing recombination in initially nonrecombining populations. We found that the equilibrium level of recombination in the host depended not only on parasite virulence, but also on the strength of the modifier allele, and on whether or not the modifier was physically linked to the parasite interaction loci. Nonetheless, the maximum level of recombination for linked loci at equilibrium was about 0.3 (60% of free recombination) for interactions with highly virulent parasites; the level decreased for unlinked modifiers, and for lower levels of parasite virulence. We conclude that recombination spreads because it provides a combination of an immediate (next-generation) fitness benefit and a delayed (two or more generations) increase in the rate of response to directional selection. The relative impact of these two mechanisms depends on the virulence of parasites early in the spread of the modifier, but a trade-off between the two dictates the equilibrium modifier frequency for all nonzero virulences that we examined. In addition, population mean fitness was higher in populations at intermediate equilibria than populations fixed for free recombination or no recombination. The difference, however, was not enough on its own to overcome the two-fold cost of producing males.  相似文献   

14.
Roze D  Barton NH 《Genetics》2006,173(3):1793-1811
In finite populations, genetic drift generates interference between selected loci, causing advantageous alleles to be found more often on different chromosomes than on the same chromosome, which reduces the rate of adaptation. This "Hill-Robertson effect" generates indirect selection to increase recombination rates. We present a new method to quantify the strength of this selection. Our model represents a new beneficial allele (A) entering a population as a single copy, while another beneficial allele (B) is sweeping at another locus. A third locus affects the recombination rate between selected loci. Using a branching process model, we calculate the probability distribution of the number of copies of A on the different genetic backgrounds, after it is established but while it is still rare. Then, we use a deterministic model to express the change in frequency of the recombination modifier, due to hitchhiking, as A goes to fixation. We show that this method can give good estimates of selection for recombination. Moreover, it shows that recombination is selected through two different effects: it increases the fixation probability of new alleles, and it accelerates selective sweeps. The relative importance of these two effects depends on the relative times of occurrence of the beneficial alleles.  相似文献   

15.
We give an exact solution to the Kolmogorov equation describing genetic drift for an arbitrary number of alleles at a given locus. This is achieved by finding a change of variable which makes the equation separable, and therefore reduces the problem with an arbitrary number of alleles to the solution of a set of equations that are essentially no more complicated than that found in the two-allele case. The same change of variable also renders the Kolmogorov equation with the effect of mutations added separable, as long as the mutation matrix has equal entries in each row. Thus, this case can also be solved exactly for an arbitrary number of alleles. The general solution, which is in the form of a probability distribution, is in agreement with the previously known results. Results are also given for a wide range of other quantities of interest, such as the probabilities of extinction of various numbers of alleles, mean times to these extinctions, and the means and variances of the allele frequencies. To aid dissemination, these results are presented in two stages: first of all they are given without derivations and too much mathematical detail, and then subsequently derivations and a more technical discussion are provided.  相似文献   

16.
The failure of maternal imprinting at the insulin-like growth factor II (Igf-2) locus predisposes individuals to several clinical conditions, including Wilms tumor. Having two functional Igf-2 genes, therefore, is selectively disadvantageous, and the condition is probably maintained in human populations by recurrent mutation. We propose two models that predict the expected frequency of functionally diploid individuals in a large population, in terms of a mutation rate, mu, and the selection coefficient against functionally diploid individuals, s. In the first model a mutant Igf-2 allele that cannot be imprinted arises from the standard, imprintable allele at a rate mu. Our second model hypothesizes a second modifier locus at which a recessive allele arises at rate mu. Mothers who are homozygous for this recessive modifier allele fail to imprint their eggs. Both models predict the expected frequency of affecteds to be 2 mu/s(1 + mu), approximately twice that predicted by the standard one-locus model of a recessive allele in mutation-selection balance. This frequency suggests that < or = 25% of the cases of Wilms tumor are due to the failure to imprint the maternal Igf-2 gene.  相似文献   

17.
Testing for increased mutation rate for neutral alleles   总被引:2,自引:0,他引:2  
Methods are given to test whether, at a selectively neutral locus, one can reasonably assume a recent increase in mutation rate to new alleles. The tests use the number of singletons, doubletons, etc. occurring at this locus and also the frequency of the most frequent allele.  相似文献   

18.
T. Lehmann  W. A. Hawley    F. H. Collins 《Genetics》1996,144(3):1155-1163
A test to evaluate constraints on the evolution of single microsatellite loci is described. The test assumes that microsatellite alleles that share the same flanking sequence constitute a series of alleles with a common descent that is distinct from alleles with a mutation in the flanking sequence. Thus two or more different series of alleles at a given locus represent the outcomes of different evolutionary processes. The higher rate of mutations within the repeat region (10(-3) or 10(-4)) compared with that of insertion/deletion or point mutations in adjacent flanking regions (10(-9)) or with that of recombination between the repeat and the point mutation (10(-6) for sequences 100 bp long) provides the rationale for this assumption. Using a two-phase, stepwise mutation model we simulated the evolution of a number of independent series of alleles and constructed the distributions of two similarity indices between pairs of these allele series. Applying this approach to empirical data from locus AG2H46 of Anopheles gambiae resulted in a significant excess of similarity between the main and the null series, indicating that constraints affect allele distribution in this locus. Practical considerations of the test are discussed.  相似文献   

19.
It is well known that in a subdivided population subject to soft selection with two alleles at one locus, instability of both fixation states (a “protected polymorphism”) entails at least one stable polymorphic equilibrium. Although stable polymorphic and monomorphic equilibria can coexist in general, a stable fixation state (monomorphic equilibrium) precludes the existence of any polymorphic equilibrium under the circumstances of haploid or submultiplicative diploid viabilities. This provides that a stable monomorphism is robust against random fluctuations in allele frequencies. It also increases the known circumstances where there is a unique globally attracting stable equilibrium, i.e., where allele frequencies are determined by the selection-migration structure independent of the history of the system.  相似文献   

20.
A. M. Valdes  M. Slatkin    N. B. Freimer 《Genetics》1993,133(3):737-749
We summarize available data on the frequencies of alleles at microsatellite loci in human populations and compare observed distributions of allele frequencies to those generated by a simulation of the stepwise mutation model. We show that observed frequency distributions at 108 loci are consistent with the results of the model under the assumption that mutations cause an increase or decrease in repeat number by one and under the condition that the product Nu, where N is the effective population size and u is the mutation rate, is larger than one. We show that the variance of the distribution of allele sizes is a useful estimator of Nu and performs much better than previously suggested estimators for the stepwise mutation model. In the data, there is no correlation between the mean and variance in allele size at a locus or between the number of alleles and mean allele size, which suggests that the mutation rate at these loci is independent of allele size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号