首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Bacillus subtilis unable to initiate a new round of replication at 45 C has been described. Here we show that inhibition of DNA synthesis in this mutant is reversible and that DNA synthesis is resumed at low temperature, even in the presence of chloramphenicol. Initiation of a new replication cycle thus can occur in the absence of protein synthesis. A thermolabile component required for initiation therefore appears to be synthesized at 45 C in an inactive form and can be activated at 30 C in the presence of an inhibitor of protein synthesis. Although resistant to chloramphenicol, the reinitiation of replication occurring after lowering the temperature is sensitive to rifampin and streptolydigin.  相似文献   

2.
The nature of the deoxyribonucleic acid synthesis reported by others to occur at 45 degrees C in germinating spores of the temperature-sensitive deoxyribonucleic acid initiation mutant of Bacillus subtilis 168, TsB134, has been investigated. Density transfer experiments, using 5-bromouracil, show that a normal round of replication can occur in a significant fraction of the spore population under such conditions. No repair synthesis is detectable. The possibility raised by this finding, that initiation of the first round of replication during spore outgrowth is unique in that its initiation is determined prior to germination, has been investigated by comparing the behavior of germinating spores of isogenic strains of B. subtilis 168, one carrying and the other without the dnaB (Ts)134 mutation. It is shown that deoxyribonucleic acid synthesis in the Ts strain is very sensitive to temperature in the vicinity of 45 degrees C. At a slightly higher temperature, 49 degrees C, initiation of the first round of replication in the Ts strain is completely (greater than 96%) blocked, but it proceeds normally in the Ts(+) strain. Thus, it is concluded that, after the germination of a spore, the action of the dnaB134 gene product is an obligatory requirement for initiation of the first round of replication. The initiation of replication that can occur in spores of the original TsB134 strain germinating at 45 degrees C is presumably due to incomplete inactivation of the dnaB134 gene product under such conditions.  相似文献   

3.
A temperature-sensitive mutant of Bacillus subtilis is defective in deoxyribonucleic acid (DNA) synthesis, contains a lesion in the dnaC locus, and is not primarily an initiation mutant. The amount of DNA synthesized by this mutant at temperatures above 40 C decreases with increasing temperature. DNA synthesis resumes within 20 min after the temperature is lowered to 30 C. In the presence of chloramphenical, DNA synthesis begins at a reduced rate after the temperature is lowered to 30 C. Spores germinated at 46 C cannot initiate DNA replication. The capacity for residual DNA synthesis is stable at the restrictive temperature during inhibition of DNA synthesis. When the temperature is lowered to 30 C after a period of incubation at 43 C, DNA synthesis starts at the origin of the chromosome as well as at preexisting growing points. Similar DNA synthesis patterns are found in mutant cells in vivo and after toluene treatment.  相似文献   

4.
A mutant of Bacillus subtilis Ts37 has been isolated in which deoxyribonucleic acid (DNA) synthesis is inhibited at high temperature. The results presented here indicate that the process of initiation of DNA replication is temperature sensitive in this mutant. After shifting to 45 C, DNA increases 40 to 50% before synthesis ceases; an inhibition of protein synthesis permits an equivalent amount of DNA to be synthesized. A density shift experiment coupled with a marker frequency analysis shows that DNA synthesized at 45 C is highly enriched in the markers situated at the end of the chromosome. Transforming DNA extracted from a culture which has been incubated at 45 C exhibits the relative transforming efficiency for origin and terminus markers characteristic of completed chromosomes. After a shift back from 45 C to 30 C, reinitiation appears to occur always in the same region of the bacterial chromosome; in addition, replication as well as cell division is synchronized.  相似文献   

5.
The dnaA and dnaC genes are thought to code for two proteins required for the initiation of chromosomal deoxyribonucleic acid replication in Escherichia coli. When a strain carrying a mutation in either of these genes is shifted from a permissive to a restrictive temperature, chromosome replication ceases after a period of residual synthesis. When the strains are reincubated at the permissive temperature, replication again resumes after a short lag. This reinitiation does not require either protein synthesis (as measured by resistance to chloramphenicol) or ribonucleic acid synthesis (as measured by resistance to rifampin). Thus, if there is a requirement for the synthesis of a specific ribonucleic acid to initiate deoxyribonucleic acid replication, this ribonucleic acid can be synthesized prior to the time of initiation and is relatively stable. Furthermore, the synthesis of this hypothetical ribonucleic acid does not require either the dnaA of dnaC gene products. The buildup at the restrictive temperature of the potential to reinitiate deoxyribonucleic acid synthesis at the permissive temperature shows rather complex kinetics the buildup roughly parallels the rate of mass increase of the culture for at least the first mass doubling at the restrictive temperature. At later times there appears to be a gradual loss of initiation potential despite a continued increase in mass. Under optimal conditions the increase in initiation potential can equal, but not exceed, the increase in cell division at the restrictive temperature. These results are most easily interpreted according to models that postulate a relationship between the initiation of deoxyribonucleic acid synthesis and the processes leading to cell division.  相似文献   

6.
Three thermosensitive deoxyribonucleic acid (DNA) initiation mutants of Escherichia coli exposed to the restrictive temperature for one to two generations were examined for the ability to reinitiate DNA replication after returning to the permissive temperature in the presence of rifampin, chloramphenicol, or nalidixic acid. Reinitiation in the dnaA mutant was inhibited by rifampin but not by chloramphenicol, whereas renitiation was not inhibited by rifampin but not by chloramphenicol, whereas reinitiation was not inhibited in two dnaC mutants by either rifampin or chloramphenicol. To observe the rifampin inhibition, the antibiotic must be added at least 10 min before return to the permissive temperature. The rifampin inhibition of reinitiation was not observed when a rifampin-resistant ribonucleic acid ((RNA) polymerase gene was introduced into the dnaA mutant, demonstrating that RNA polymerase synthesizes one or more RNA species required for the initation of DNA replication (origin-RNA). Reinitiation at 30 degrees C was not inhibited by streptolydigin in a stretolydigin-sensitive dnaA muntant. Incubation in the presence of nalidixic acid prevented subsequent reinitiation in the dnaC28 mutant but did not inhibit reinitiation in the dnaA5 muntant. These results demonstrate that the dnaA gene product acts before or during the synthesis of an origin-RNA, RNA polymerase synthesizes this origin RNA, and the dnaC gene product is involved in a step after this RNA synthesis event. Furthermore, these results suggest that the dnaC gene product is involved in the first deoxyribounucleotide polymerization event wheareas the dnaA gene product acts prior to this event. A model is presented describing the temporal sequence of events that occur during initiation of a round of DNA replication, based on results in this and the accompanying paper.  相似文献   

7.
The kinetics of reinitiation of chromosome replication of eight dnaA(Ts) mutants was investigated in an isogenic set of strains. Five mutants (167, 46, 601, 606 and 5) are classified as reversible, since they can reinitiate at 30 C without protein synthesis, whereas the other three (508, 205, 204) require protein synthesis. In the presence of protein synthesis, reversible mutants initiate one round of replication rapidly after a shift to 30δC, indicating that they contain active or renaturable DnaA protein. The dnaA508 and dnaA204 mutants also reinitiate chromosome replication rapidly, whereas reinitiation is delayed 15–20min in dnaA205. The dnaA508 and dnaA204 mutants might contain active DnaA protein just below the threshold level at 42δC and only require synthesis of small amounts of new DnaA protein before initiation at 30δC, whereas dnaA205 accumulates DnaA protein for some time at 30δC before reaching the initiation threshold. Three of the reversible mutants (5, 601, and 606) exhibited, in addition to the protein synthesis-independent initiation capacity, an RNA synthesis-independent initiation capacity. The thermal stability of these initiation capacities is the same as for mutant DnaA protein, strongly suggesting that mutant DnaA protein is responsible for both.  相似文献   

8.
The DnaD protein in Gram-positive bacteria is thought to be essential for the initiation step in DNA replication. In the present study, we characterized two Staphylococcus aureus mutants whose temperature-sensitive growth phenotype could be complemented by a plasmid carrying the dnaD gene. These mutants each had a single amino acid substitution in the DnaD protein and showed decreased DNA synthesis at restrictive temperature. Analyses of the origin to terminus ratio by Southern blotting, and of origin numbers per cell by flow cytometry, revealed that, at the restrictive temperature, one mutant continued ongoing DNA replication but failed to initiate DNA replication. The other mutant, in contrast, could not complete ongoing DNA replication and proceeded to degrade the chromosome. However, if protein synthesis was inhibited, the second mutant could complete DNA replication. These results suggest that DnaD protein is necessary not only for the initiation step, but also to avoid replication fork blockage. Moreover, both mutants were sensitive to mitomycin C, a drug that induces DNA damage, suggesting that the DnaD protein is also involved in DNA repair.Communicated by H. Ikeda  相似文献   

9.
In this paper we present a preliminary characterization of a temperature-sensitive mutant of Bacillus subtilis which appears to be defective in deoxyribonucleic acid (DNA) replication at high temperature. When log-phase cells of the mutant were transferred from 30 to 45 C, protein synthesis and ribonucleic acid synthesis continued more or less normally for several hours, whereas DNA synthesis continued at a normal rate for only 20 to 30 min and then was drastically reduced. The amount of DNA synthesized prior to this reduction corresponded approximately to the amount of DNA synthesized under conditions of protein synthesis inhibition by the parent or mutant strain. After 1 hr of growth at high temperature, cells of the mutant showed a pronounced drop in viable count. After 30 or 60 min of growth at high temperature, DNA synthesis could be restored by lowering the temperature. A longer period of growth at 45 C led to a loss of reversibility of DNA synthesis. Spores of the mutant synthesized no DNA when germinated at high temperature, although an outgrowing cell appeared. When spores were germinated at low temperature until DNA synthesis began, and then were transferred to high temperature, macromolecular synthesis continued as the log-phase transfer experiments described above.  相似文献   

10.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:10,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

11.
Several temperature-sensitive initiation mutants of Escherichia coli were examined for the ability to initiate more than one round of replication after being held at nonpermissive temperature for approximately 1.5 generation equivalents. The capacity for initiation was measured by residual synthesis experiments and rate experiments under conditions where protein synthesis and ribonucleic acid synthesis were inhibited. Results of the rate and density transfer experiments suggest that the cells may initiate more than one round of replication in the absence of protein or ribonucleic acid synthesis. This contrasts with the results of the residual synthesis experiments which suggest that, under these conditions, only one round of synthesis is achieved. These findings suggest that the total amount of residual synthesis achieved in the presence of an inhibitor may be both a function of the number of initiation events which occur and the effect of the inhibitor of protein or ribonucleic acid synthesis on chain elongation.  相似文献   

12.
Summary The effects of an intercalating dye, ethidium bromide (EtBr), on the initiation of chromosome replication in Bacillus subtilis were studied. Spores of a thymine requiring mutant acquired the ability to initiate one round of replication in the absence of RNA and protein synthesis (initiation potential) during germination in a thymine starved medium. When EtBr was added after the initiation potential was fully established, initiation of replication was completely inhibited. This inhibition was reversible, and initiation was resumed when the drug was removed. The recovery of initiation occurred in the absence of protein synthesis but did require RNA synthesis and an active dna gene product.During germination both a DNA-protein complex and a DNA-membrane complex were formed at the replication origin in parallel with the establishment of initiation potential. EtBr destroyed both of these complexes at the concentration which inhibited initiation.The first round of replication of a plasmid DNA, pSL103, during spore germination was also prevented by EtBr. However a higher concentration was required to inhibit plasmid replication. It was found that the plasmid formed two complexes identical to the S- and M-complex of the chromosome origin. Compared to the chromosome complexes the plasmid complexes were less sensitive to EtBr. The loss of sensitivity was equivalent to that for the initiation of the plasmid compared to the chromosome. These results indicate that the target of EtBr is the DNA in the S- and M-complexes whose conformation is essential for the initiation of chromosome and plasmid replication.III of this series is Murakami et al. 1976  相似文献   

13.
14.
An Escherichia coli HF4704S mutant temperature sensitive in deoxyribonucleic acid (DNA) synthesis and different from any previously characterized mutant was isolated. The mutated gene in this strain was designated dnaH. The mutant could grow normally at 27 C but not at 43 C, and DNA synthesis continued for an hour at a decreasing rate and then ceased. After temperature shift-up, the increased amount of DNA was 40 to 50%. When the culture was incubated at 43 C for 70 min and then transferred to 27 C, DNA synthesis resumed after about 50 min, initiating synchronously at a fixed region on the bacterial chromosome. The initiation step in DNA replication sensitive to 30 mug of chloramphenicol per ml occurs synchronously before the resumption of DNA replication after the temperature shift-down, being completed about 30 min before the start of DNA replication. When the cells incubated at 27 C in the presence of 30 mug of chloramphenicol per ml after the temperature shift-down to 27 C were transferred to 43 C with simultaneous removal of the antibiotic, no resumption of DNA replication was observed. When the culture was returned to 43 C after being released from high-temperature inhibition at 30 min before the start of DNA replication, no recovery replication was observed; whereas at 20 min, the recovery of replication was observed. These results indicated that HF4704S was temperature sensitive in the initiation of DNA replication. Analysis of HF4704S, by an interrupted conjugation experiment, indicated that gene dnaH was located at about 64 min on the E. coli C linkage map. In E. coli S1814 (a K-12 derivative), which was a dnaH(ts) transductant from HF4704S (C strain) with phage P1, the mutated gene (dnaH) was demonstrated to be closely linked to the thyA marker by conjugation and P1 transduction experiments and to be distinct from genes dnaA through dnaG.  相似文献   

15.
Genetic Regulation of Cell Division Initiation in Bacillus subtilis   总被引:12,自引:9,他引:3  
The growth and division properties of a temperature-sensitive mutant of Bacillus subtilis defective in the initiation of cell division have been studied. Log-phase cells transferred from 30 to 45 C continue to increase in length but fail to initiate new divisions. Deoxyribonucleic acid synthesis continues at 45 C, and genomes are segregated along the filament length. When filaments are returned to 30 C, division initiation resumes, and the long multinucleate clones are partitioned into normal-size cells. Occasionally, multiple cross walls initiate in close proximity, resulting in tiny cells, some of which are anucleate. Division resumption is sensitive to protein synthesis inhibitors, suggesting there is a new protein required for the initiation of division in filaments.  相似文献   

16.
A heat-labile protein required for division accumulates during the duplication cycle of Escherichia coli. Its formation appears to commence shortly after the cell divides, and it reaches a maximal amount shortly before the next division. A plausible mechanism for timing cell division depends on building up the critical amount of this protein. Completion of deoxyribonucleic acid (DNA) replication is also necessary for division to occur, but it does not uniquely initiate division. The evidence for these conclusions comes from heat-shock experiments; heating to 45 C for 15 min delays division increasingly with the age of a cell. A heat shock given near the end of a cycle delays division for about 30 min, whereas at the beginning of the cycle it hardly affects division. The net result is synchronization of cell division. The effect of heat is increased in bacteria which have incorporated p-fluoro-phenylalanine into their proteins. When the incorporation is early and the heat shock is late in the cycle, division is delayed by about 30 min, indicating that the division protein is synthesized early even though its sensitivity is not observed until later. At any time in the cell cycle, heat shock simply delays total protein and DNA synthesis ((3)H-thymidine uptake) for approximately 14 min. DNA replication and cell division are thus discoordinated, since DNA replication is not synchronized by the treatment.  相似文献   

17.
Potential for initiation of chromosome replication present in temperature-sensitive, initiation-defective dnaA5 mutants of Escherichia coli B/r incubated at nonpermissive temperature was expressed by shifting to a more permissive temperature (25 degrees C). Upon expression of initiation potential, the rate of [3H]thymidine incorporation varied in a bimodal fashion, i.e., there was an initial burst of incorporation, which lasted 10 to 20 min, then a sudden decrease in incorporation, and finally a second rapid increase in incorporation. Analyses of this incorporation pattern indicated that a round of replication initiated upon expression of initiation potential, but DNA polymerization stopped after replication of 5 to 10% of the chromosome. This round of replication appeared to resume about 30 min later coincident with initiation of a second round of replication. The second initiation was unusually sensitive to low concentrations of novobiocin (ca. 1 microgram/ml) when this inhibitor was added in the presence of chloramphenicol. In the absence of chloramphenicol, novobiocin at this concentration had no detectable effect on DNA replication. It is suggested that cis-acting inhibition, attributable to an attempted second initiation immediately after the first, caused the first round to stall until both it and the second round could resume simultaneously. This DNA replication inhibition, probably caused by overinitiation, could be a consequence of restraints on replication in the vicinity of oriC, possibly topological in nature, which limit the minimum interinitiation interval in E. coli.  相似文献   

18.
A newly isolated dnaK mutant of Escherichia coli, which contains the mutation dnaK111, has been found to be conditionally defective in initiation of DNA replication. Mutant cells that were transferred to high temperature exhibited residual DNA synthesis before the synthesis stopped completely. Analysis of the DNA synthesized at high temperature by hybridization with probe DNAs for detection of DNA replicated in the origin (oriC) and terminal (terC) regions has revealed that this mutant is unable to initiate a new round of DNA replication at high temperature after termination of the round in progress. The cells exposed to high temperature were subsequently capable of initiating DNA replication at low temperature in a synchronous manner. DNA synthesis of this mutant became temperature resistant upon inactivation of the rnh gene, similar to that of dnaA mutants, although cell growth of the dnaK mutant with the inactive rnh gene remained temperature sensitive. The dnaK mutation prevented DNA synthesis of lambda bacteriophage at high temperature even in the absence of the rnh gene function.  相似文献   

19.
Acriflavine-resistant mutants were isolated from an acriflavine-sensitive (acrA) strain of Escherichia coli K-12 and then tested for temperature sensitivity of cell division. Genetic analysis characterized two new genetic loci, acrC and acrD. The former was mapped between tonA and proA, and the latter between the origin of genetic transfer of HfrH and serB. acrC and acrD mutants could divide but did not initiate a new round of deoxyribonucleic acid (DNA) replication at 43 degrees C. DNA synthesis of the acrC mutant cells ceased after a period of time following temperature shift-up, and thereafter DNA degradation occurred. However, cell mass continued to increase for a long time at the nonpermissive temperature. On the other hand, DNA synthesis of the acrD mutant cells ceased soon after the shift-up, and the cell mass did not appreciably increase during the prolonged incubation.  相似文献   

20.
Resporulation of outgrowing Bacillus subtilis spores.   总被引:7,自引:5,他引:2       下载免费PDF全文
Germinated spores of Bacillus subtilis were incubated in outgrowth medium and tested periodically for capacity to sporulate when suspended in sporulation medium. Concurrent measurements were made of deoxyribonucleic acid (DNA) content and numbers of cell division septa and nucleoids. Sporulation potential is shown to reach a peak at about 110 min at which time the chromosomes are probably well into the second round of replication. Experiments with nalidixic acid show that sporulation potential can be generated in the outgrowth medium even when DNA synthesis is largely prevented. Further experiments show that nalidixic acid apparently does not prevent the formation of DNA initiation complexes, which can subsequently function after resuspension in the sporulation medium. The results support those previously obtained with a temperature-sensitive DNA mutant which indicated that sporulation could only be induced at a specific stage of chromosome replication, and then only if the cells are in a state of nutritional "step-down".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号