首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
土著菌根真菌和混生植物对羊草生长和磷营养的影响   总被引:1,自引:0,他引:1  
雷垚  郝志鹏  陈保冬 《生态学报》2013,33(4):1071-1079
植物种间相互作用直接影响植物生长、根系可塑性及养分吸收,而与植物共生的丛枝菌根真菌可以改变植物个体和种间养分资源的分配,具有协调种间竞争的潜力.以我国北方草甸草原建群种羊草(Leymus chinensis)和混生植物紫花苜蓿(Medicago sativa)及独行菜(Lepidium spetalum)为供试植物,通过模拟盆栽试验,研究了土著菌根真菌和混生植物对羊草生长、根系形态及磷营养的影响.试验结果表明,土著菌根真菌能够与羊草及紫花苜蓿形成良好共生,而独行菜根内基本未形成菌根共生结构.土著菌根真菌显著降低了羊草及独行菜的生物量,但促进了紫花苜蓿的生长;混种紫花苜蓿显著促进了羊草的生长,而混种独行菜则显著抑制了羊草的生长.土著菌根真菌对羊草根系形态的影响表现出与植株生物量类似的趋势,但不同混生植物对羊草根系生长均无显著影响.土著菌根真菌和混生植物对羊草植株磷含量均无显著影响.与混生植物相比,羊草具有较高的比根长和磷吸收能力,这也解释了其负向菌根依赖性.研究证实了菌根真菌和植物种间相互作用均是影响草原优势植物生长和根系发育的重要因素,深入研究其交互作用对于科学管理草地生态系统,维持植物群落的稳定性和生态系统生产力具有重要意义.  相似文献   

2.
三叶草体内磷通过菌丝桥向黑麦草的传递研究   总被引:14,自引:3,他引:11  
应用5室分隔法研究了供体三叶草体内的32P通过菌丝桥向受体黑麦草的传递作用。结果表明,菌根侵染供体三叶草根系之后,根外菌丝可穿过中室到达受体植株根室而再度侵染受体黑麦草的根系,从而形成三叶草-黑麦草根系之间的菌丝桥;供体三叶草体内的32P可通过根间菌丝桥传递给受体黑麦草,32P的传递量随受体植株施磷水平的提高而降低.  相似文献   

3.
外生菌根菌丝桥在板栗幼苗间传递磷的效应   总被引:1,自引:1,他引:0  
徐冰  冯固  潘家荣  秦岭  李晓林 《生态学报》2003,23(4):765-770
采用^32P示踪和4室根箱方法研究了外生菌根菌丝桥对板栗磷营养和植株间磷素传递作用的效应。给一株板栗幼苗(供体)接种外生菌根真菌美味牛肝菌(Boletus edulis)、褐环乳牛肝菌(Suillus luteus),菌根真菌在侵染供体植物以后其根外菌丝继续生长并侵染邻近的另外一株板栗植株(受体)。同位素示踪试验表明,供体板栗体内的^32P可通过菌丝桥传递给受体板栗,受体植株不仅根中^32P放射性强度高于对照,而且茎中^32P强度也显著高于对照。说明外生菌根真菌在不同板栗植株间形成了菌丝桥,但是菌丝桥传递的磷的数量很有限,仅占供体植株体内总磷量的5%-8%。美味牛肝菌和褐环乳牛肝菌侵染供体板栗植株以后,使植株含磷量、总吸磷量和生物量较对照明显增加。受体板栗幼苗在菌丝桥建立以后其植株含磷量和总吸磷量显著高于对照,但生物量与对照没有显著差别。  相似文献   

4.
 应用四室隔网系统研究了菌丝桥在日本落叶松(Larix kaempferi)幼苗间传递磷的作用。结果表明,供体接种卷缘桩菇(Paxillus involutus)和彩色豆马勃(Pisolithus tinctorius)后,其外延菌丝可以穿过隔离层侵染受体落叶松,在供体和受体落叶松间形成了菌丝桥。供体植株接种菌根真菌后生物量明显增加,但是对受体植株没有显著的影响。菌根真菌侵染的供体和受体植株的根、地上部吸磷量均分别显著高于对照,而且供体植株根、地上部吸磷量增加的程度明显高于受体。被卷缘桩菇和彩色豆马勃侵染的受体植株体内32P的放射性强度分别是对照的10倍和6倍,两者形成菌丝桥后传递到受体植株的32P分别为供体植株体内32P的1.10%和0.22%。供体植株吸收的32P可以通过菌丝桥传递给受体,但是绝对数量十分有限,对受体植株磷营养没有产生显著的影响,但P. involutus和P. tinctorius侵染受体植株后,促进了受体落叶松对磷的吸收,这是菌丝桥形成后,真菌帮助受体植株吸收磷引起的。  相似文献   

5.
丛枝菌根菌丝桥介导的番茄植株根系间抗病信号的传递   总被引:2,自引:0,他引:2  
菌根菌丝桥是植物间在地下进行物质交流的通道, 但它能否作为植物间地下化学通讯的通道来传递抗病信号则缺乏研究. 本文利用丛枝菌根真菌(AMF)摩西球囊霉在供体与受体番茄植株间建立菌丝桥, 对供体植株接种早疫病病原菌茄链格孢菌, 研究供体与受体番茄植株根系间是否存在抗病信号的传递. 荧光定量PCR检测表明, AMF侵染后的供体番茄植株再接种病原菌, 其根系中苯丙氨酸解氨酶基因(PAL)、脂氧合酶基因(LOX)和几丁质酶基因(PR3)的转录水平显著高于仅接种病原菌、未接种病原菌和AMF, 以及只接种AMF的番茄植株. 更重要的是, 与供体有菌丝桥连接的受体番茄根系中PAL、LOX和PR3的基因的表达量也显著高于无菌丝桥连接、菌丝桥连接被阻断以及有菌丝桥连接但供体植物未接种病原菌的处理,3个基因最高转录水平达到无菌丝桥连接对照受体植物的4.2、4.5和3.5倍. 此外, 供体植株根系启动防御反应的时间(18和65 h)比受体(100和140 h)早. 表明病原菌诱导番茄供体根系产生的抗病信号可以通过菌丝桥传递到受体根系.  相似文献   

6.
三叶草根间菌丝桥传递衰亡根系中磷的作用   总被引:9,自引:0,他引:9  
应用五室方法研究了三叶草根间菌线桥传递衰亡根系中磷的作用。三叶草生长至10周切除供体地上部让根系衰亡,11周收收获样品进行分析测定。结果表明:菌线桥可以在植株间传递^32P,从而使受体三叶草地上部磷营养状况得到改善;供体植株地上部切除后有利于^32P通过菌丝桥从衰亡根系向受体植株的转移,表现为受体植株含磷量有所增加,但对植株的生长影响不大。  相似文献   

7.
为了解植株间的菌丝网络(common mycorrhizal networks,CMNs)的功能,对丛枝菌根菌丝网络在紫花苜蓿(Medicago sativa)机械损伤信号传递中的作用进行了研究.结果表明,与经机械损伤处理的供体植株有CMNs连接的受体植株叶片中挥发物的数量和种类都显著高于无CMNs连接的植株;供体植株...  相似文献   

8.
本研究以紫花苜蓿为寄主植物,采用五室培养系统按照根系在土壤中分布的体积比例定量模拟根系损伤,初步探讨紫花苜蓿和菌根真菌共生体的协同修复作用及其生态效应。结果表明,在不同的试验设计中,接种菌根有效地缓解了根系损伤带来的不利影响,双侧接菌在植株生物量、菌根侵染效果以及收集到的矿质元素浓度等均高于单侧接菌和对照,土壤有效磷含量在伤根前后仍维持在10 mg/kg。接菌改善了紫花苜蓿根际微环境,在一定程度上减缓根系损伤对植物的负面影响,有利于采煤沉陷区地表植被的修复。  相似文献   

9.
多枝柽柳(Tamarix ramosissima)与疏叶骆驼刺(Alhagi sparsifolia)是塔里木河下游优势种,也是重要的丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)共生植物,二者常相伴而生且均受水分严重限制。研究采用盆栽试验法,以疏叶骆驼刺和多枝柽柳幼苗为试验材料,设定正常水分[土壤相对含水量(70±5)%,D0]、中度水分胁迫[土壤相对含水量(40±5)%,D1]和重度水分胁迫[土壤相对含水量(20±5)%,D2]3个水分梯度,设置接种(AMF+)和不接种(AMF-)2种处理,以及供体植物疏叶骆驼刺和受体植物多枝柽柳之间2种菌丝传递距离(长菌丝传递距离30 cm, L;短菌丝传递距离15 cm, S),探究了干旱胁迫下丛枝菌根真菌菌丝传递距离对2种不同生活型的植物生长和生理的影响。结果表明,(1)供体植物接种AMF后在供、受体间形成丛枝菌根菌丝网络(arbuscular mycorrhizal networks, AMNs),其中与正常水分(D0)处理下的侵染率相比,重度水分(D2)处理下长距离处理受体侵染率的降幅为73.22%。(...  相似文献   

10.
为揭示丛枝菌根真菌对喀斯特地区植物水分吸收的贡献,用摩西管柄囊霉(Funneliformis mosseae)和根内根孢囊霉(Rhizophagus intraradices)接种青冈栎(Cyclobalanopsis glauca)幼苗,利用根系分室装置,使相邻青冈栎之间仅通过菌根菌丝网络连接,用稳定氢同位素作为标记物,估算菌根网络对青冈栎幼苗水分传输的贡献。结果表明,青冈栎根外菌丝可延伸至根外10~15 cm,根际土壤中氢稳定同位素丰度与菌丝密度呈显著正相关。在土壤干旱期间,相邻青冈栎植株之间能够通过菌根网络输导水分。利用混合线性模型公式估算菌根网络水分输送贡献,结果显示,受体室青冈栎植株水分中约1.7%~2.2%是通过菌丝传输作用从供体室吸收,这对于生长在土层浅薄且存在地质性干旱的喀斯特地区植物而言具有积极作用。  相似文献   

11.
Chen BD  Liu Y  Shen H  Li XL  Christie P 《Mycorrhiza》2004,14(6):347-354
We investigated uptake of Cd by arbuscular mycorrhizal (AM) maize inoculated with Glomus mosseae from a low-P sandy calcareous soil in two glasshouse experiments. Plants grew in pots containing two compartments, one for root and hyphal growth and one for hyphal development only. Three levels of Cd (0, 25 and 100 mg kg–1) and two of P (20 and 60 mg kg–1) were applied separately to the two compartments to assess hyphal uptake of Cd. Neither Cd nor P addition inhibited root colonization by the AM fungus, but Cd depressed plant biomass. Mycorrhizal colonization, P addition and increasing added Cd level led to lower Cd partitioning to the shoots. Plant P uptake was enhanced by mycorrhizal colonization at all Cd levels studied. When Cd was added to the plant compartment and P to the hyphal compartment, plant biomass increased with AM colonization and the mycorrhizal effect was more pronounced with increasing Cd addition. When P was added to the plant compartment and Cd to the hyphal compartment, plant biomass was little affected by AM colonization, but shoot Cd uptake was increased by colonization at the low Cd addition rate (25 mg kg–1) and lowered at the higher Cd rate (100 mg kg–1) but with no difference in root Cd uptake. These effects may have been due to immobilization of Cd by the fungal mycelium or effects of the AM fungus on rhizosphere physicochemical conditions and are discussed in relation to possible phytostabilization of contaminated sites by AM plants.  相似文献   

12.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

13.
An investigation was carried out to test whether the mechanism of increased zinc (Zn) uptake by mycorrhizal plants is similar to that of increased phosphorus (P) acquisition. Maize (Zea mays L.) was grown in pots containing sterilised calcareous soil either inoculated with a mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe or with a mixture of mycorrhizal fungi, or remaining non-inoculated as non-mycorrhizal control. The pots had three compartments, a central one for root growth and two outer ones for hyphal growth. The compartmentalization was done using a 30-m nylon net. The root compartment received low or high levels of P (50 or 100 mg kg–1 soil) in combination with low or high levels of P and micronutrients (2 or 10 mg kg–1 Fe, Zn and Cu) in the hyphal compartments.Mycorrhizal fungus inoculation did not influence shoot dry weight, but reduced root dry weight when low P levels were supplied to the root compartment. Irrespective of the P levels in the root compartment, shoots and roots of mycorrhizal plants had on average 95 and 115% higher P concentrations, and 164 and 22% higher Zn concentrations, respectively, compared to non-mycorrhizal plants. These higher concentrations could be attributed to a substantial translocation of P and Zn from hyphal compartments to the plant via the mycorrhizal hyphae. Mycorrhizal inoculation also enhanced copper concentration in roots (135%) but not in shoots. In contrast, manganese (Mn) concentrations in shoots and roots of mycorrhizal plants were distinctly lower, especially in plants inoculated with the mixture of mycorrhizal fungi.The results demonstrate that VA mycorrhizal hyphae uptake and translocation to the host is an important component of increased acquisition of P and Zn by mycorrhizal plants. The minimal hyphae contribution (delivery by the hyphae from the outer compartments) to the total plant acquisition ranged from 13 to 20% for P and from 16 to 25% for Zn.  相似文献   

14.
Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.  相似文献   

15.
Endomycorrhizal fungi in nitrogen transfer from soybean to maize   总被引:5,自引:0,他引:5  
Using 15N as a tracer, interspecific N-transfer was studied during the course of plant development. The use of barriers of differing permeabilities between donor and receiver plants allowed separation of the effect of mycorrhizal colonization, root or hyphal contact and interplant hyphal bridging, on 15N-transfer from soybean (Glycine max (L.) Merrill) to maize (Zea mays L.). More transfer was measured between mycorrhizal plants, but transport of 15N from the labelled host plant to Glomus versiforme (Karsten) Berch did not seem to occur at the symbiotic interface, suggesting that the fungus is independent of its host for its N-nutrition, and that the role of hyphal bridges in N-transfer between plants, is not significant. Uptake by the receiver plant of the N excreted by the donor plant root system appears to be the mechanism of N-transfer between plants. The factor most affecting 15N-transfer between plants was found to be the extent of the contact between plant root systems. The presence of the endomycorrhizal fungus in plant roots reduced 15N-loss from soybean, but at the same time, its extensive hyphal network improved the efficiency of the maize root system for the recovery of the 15N excreted by soybeans. The net result was a better conservation of the N resource within the plant system. The transfer of N between mycorrhizal plants was particularly enhanced by the death of the soybean.  相似文献   

16.

Background and aims

We conducted a mesocosm study to investigate the extent to which the process of hydraulic redistribution of soil water by plant roots is affected by mycorrhizosphere disturbance.

Methods

We used deuterium-labeled water to track the transfer of hydraulically lifted water (HLW) from well-hydrated donor oaks (Quercus agrifolia Nee.) to drought-stressed receiver seedlings growing together in mycorrhizal or fungicide-treated mesocosms. We hypothesized that the transfer of HLW from donor to receiver plants would be enhanced in undisturbed (non-fungicide-treated) mesocosms where an intact mycorrhizal hyphal network was present.

Results

Contrary to expectations, both upper soil and receiver seedlings contained significantly greater proportions of HLW in mesocosms where the abundance of mycorrhizal hyphal links between donor and receiver roots had been sharply reduced by fungicide application. Reduced soil hyphal density and viability likely hampered soil moisture retention properties in fungicide-treated mesocosms, thus leading to faster soil water depletion in upper compartments. The resulting steeper soil water potential gradient between taproot and upper compartments enhanced hydraulic redistribution in fungicide-treated mesocosms.

Conclusions

Belowground disturbances that reduce soil hyphal density and viability in the mycorrhizosphere can alter the patterns of hydraulic redistribution by roots through effects on soil hydraulic properties.  相似文献   

17.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

18.
To examine the influence of vesicular-arbuscular (VA) mycorrhizal fungi on phosphorus (P) depletion in the rhizosphere, mycorrhizal and non-mycorrhizal white clover (Trifolium repens L.) were grown for seven weeks in a sterilized calcareous soil in pots with three compartments, a central one for root growth and two outer ones for hyphae growth. Compartmentation was accomplished by a 30-μm nylon net. The root compartment received a uniform level of P (50 mg kg−1 soil) in combination with low or high levels of P (50 or 150 mg kg−1 soil) in the hyphal compartments. Plants were inoculated withGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or remained uninfected. Mycorrhizal inoculation doubled P concentration in shoot and root, and increased dry weight, especially of the shoot, irrespective of P levels. Mycorrhizal contribution accounted for 76% of total P uptake at the low P level and 79% at the high P level, and almost all of this P was delivered by the hyphae from the outer compartment. In the non-mycorrhizal plants, the depletion of NaHCO3-extractable P (Olsen-P) extended about 1 cm into the outer compartment, but in the mycorrhizal plants a uniform P depletion zone extended up to 11.7 cm (the length of the hyphal compartment) from the root surface. In the outer compartment, the mycorrhizal hyphae length density was high (2.5–7 m cm−3 soil) at the various distances (0–11.7 cm) from the root surface. Uptake rate of P by mycorrhizal hyphae was in the range of 3.3–4.3×10−15 mol s−1 cm−1.  相似文献   

19.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号