首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel, highly potent 2-carboxyindole-based factor Xa inhibitors is described. Structural requirements for neutral ligands, which bind in the S1 pocket of factor Xa were investigated with the 2-carboxyindole scaffold. This privileged fragment assembly approach yielded a set of equipotent, selective inhibitors with structurally diverse neutral P1 substituents.  相似文献   

2.
A series of novel, highly potent 2-carboxyindole-based factor Xa inhibitors is described. Structural requirements for P4 ligands in combination with a neutral biaryl P1 ligand were investigated with the 2-carboxyindole scaffold. A diverse set of P4 substituents was identified, which, in conjunction with a biaryl P1 ligand, gave highly potent factor Xa inhibitors, which were also selective versus other proteases and efficacious in various antithrombotic secondary assays.  相似文献   

3.
B-Raf protein kinase, which is a key signaling molecule in the RAS–RAF–MEK–ERK signaling pathway, plays an important role in many cancers. The B-Raf V600E mutation represents the most frequent oncogenic kinase mutation known and is responsible for increased kinase activity in approximately 7% of all human cancers, establishing B-Raf as an important therapeutic target for inhibition. Through the use of an iterative program that utilized a chemocentric approach and a rational structure based design, we have developed novel, potent, and specific DFG-out allosteric inhibitors of B-Raf kinase. Here, we present efficient and versatile chemistry that utilizes a key one pot, [3+2] cycloaddition reaction to obtain highly substituted imidazoles and their application in the design of allosteric B-Raf inhibitors. Inhibitors based on this scaffold display subnanomolar potency and a favorable kinase profile.  相似文献   

4.
A series of novel 3,5-disubstituted indole derivatives as potent and selective inhibitors of all three members of the Pim kinase family is described. High throughput screen identified a pan-Pim kinase inhibitor with a promiscuous scaffold. Guided by structure-based drug design, SAR of the series afforded a highly selective indole chemotype that was further developed into a potent set of compounds against Pim-1, 2, and 3 (Pim-1 and Pim-3: IC(50)≤2nM and Pim-2: IC(50)≤100nM).  相似文献   

5.
A series of novel 6,7-dihydro-5H-cyclopenta[d]pyrimidine derivatives was successfully designed, synthesized and evaluated as a new chemical scaffold with vascular endothelial growth factor receptor (VEGFR 2) inhibitory activity. Compounds 6c and 6b showed enzyme inhibition of 97% and 87% at 10 µM, respectively, and exhibited potent dose-related VEGFR 2 inhibition with IC50 values of 0.85 µM and 2.26 µM, respectively. The design of the 6,7-dihydro-5H-cyclopenta[d]pyrimidine scaffold was implemented via consecutive molecular modelling protocols prior to the synthesis and biological evaluation of the derivatives. First, sorafenib was docked in the binding site of VEGFR 2 to study its binding orientation and affinity, followed by the generation of a valid 3D QSAR pharmacophore model for use in the virtual screening of different 3D databases. Structures with promising pharmacophore-based virtual screening results were refined using molecular docking studies in the binding site of VEGFR 2. A novel scaffold was designed by incorporating the results of the pharmacophore model generation and molecular docking studies. The new scaffold showed hydrophobic interactions with the kinase front pocket that may be attributed to increasing residence time in VEGFR 2, which is a key success factor for ligand optimization in drug discovery. Different derivatives of the novel scaffold were validated using docking studies and pharmacophore mapping, where they exhibited promising results as VEGFR 2 inhibitors to be synthesized and biologically evaluated. 6,7-dihydro-5H-cyclopenta[d]pyrimidine is a new scaffold that can be further optimized for the synthesis of promising VEGFR 2 inhibitors.  相似文献   

6.
Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson’s disease (PD). The most common mutant, G2019S, increases kinase activity, thus LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the structure, potential ligand–protein binding interactions, and pharmacological profiling of potent and highly selective kinase inhibitors based on a triazolopyridazine chemical scaffold.  相似文献   

7.
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.  相似文献   

8.
The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.  相似文献   

9.
Mps1, also known as TTK, is a mitotic checkpoint protein kinase that has become a promising new target of cancer research. In an effort to improve the lead-likeness of our recent Mps1 purine lead compounds, a scaffold hopping exercise has been undertaken. Structure-based design, principles of conformational restriction, and subsequent scaffold hopping has led to novel pyrrolopyrimidine and quinazoline Mps1 inhibitors. These new single-digit nanomolar leads provide the basis for developing potent, novel Mps1 inhibitors with improved drug-like properties.  相似文献   

10.
2-Aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-one has been proposed as a novel scaffold of EGFR inhibitor based on scaffold hoping. In the present study, a series of 2-aryl-8-hydroxy (or methoxy)-isoquinolin-1(2H)-one derivatives were synthesized. Their antiproliferative activities in vitro were evaluated via MTT assay against two human cancer cell lines, including A431 and A549. The SAR of the title compounds was preliminarily discussed. The compounds with ideal inhibition were evaluated through ELISA-based EGFR-TK assay. Compound 6c showed the best activity against A431 and EGFR tyrosine kinase. These findings suggest that title compounds are EGFR inhibitors with novel structures.  相似文献   

11.
A range of 3,6-di(hetero)arylimidazo[1,2-a]pyrazine ATP-competitive inhibitors of CHK1 were developed by scaffold hopping from a weakly active screening hit. Efficient synthetic routes for parallel synthesis were developed to prepare analogues with improved potency and ligand efficiency against CHK1. Kinase profiling showed that the imidazo[1,2-a]pyrazines could inhibit other kinases, including CHK2 and ABL, with equivalent or better potency depending on the pendant substitution. These 3,6-di(hetero)aryl imidazo[1,2-a]pyrazines appear to represent a general kinase inhibitor scaffold.  相似文献   

12.
VEGFR-2 and Src kinases both play important roles in cancers. In certain cancers, Src works synergistically with VEGFR-2 to promote its activation. Development of multi-target drugs against VEGFR-2 and Src is of therapeutic advantage against these cancers. By using molecular docking and SVM virtual screening methods and based on subsequent synthesis and bioassay studies, we identified 9-aminoacridine derivatives with an acridine scaffold as potentially interesting novel dual VEGFR-2 and Src inhibitors. The acridine scaffold has been historically used for deriving topoisomerase inhibitors, but has not been found in existing VEGFR-2 inhibitors and Src inhibitors. A series of 21 acridine derivatives were synthesized and evaluated for their antiproliferative activities against K562, HepG-2, and MCF-7 cells. Some of these compounds showed better activities against K562 cells in vitro than imatinib. The structure-activity relationships (SAR) of these compounds were analyzed. One of the compounds (7r) showed low μM activity against K562 and HepG-2 cancer cell-lines, and inhibited VEGFR-2 and Src at inhibition rates of 44% and 8% at 50μM, respectively, without inhibition of topoisomerase. Moreover, 10μM compound 7r could reduce the levels of activated ERK1/2 in a time dependant manner, a downstream effector of both VEGFR-2 and Src. Our study suggested that acridine scaffold is a potentially interesting scaffold for developing novel multi-target kinase inhibitors such as VEGFR-2 and Src dual inhibitors.  相似文献   

13.
The assembly of supramolecular complexes in multidomain scaffold proteins is crucial for the control of cell polarity. The scaffold protein of protein associated with Lin-7 1 (Pals1) forms a complex with two other scaffold proteins, Pals-associated tight junction protein (Patj) and mammalian homolog-2 of Lin-7 (Mals2), through its tandem Lin-2 and Lin-7 (L27) domains to regulate apical-basal polarity. Here, we report the crystal structure of a 4-L27 domain-containing heterotrimer derived from the tripartite complex Patj/Pals1/Mals2. The heterotrimer consists of two cognate pairs of heterodimeric L27 domains with similar conformations. Structural analysis and biochemical data further show that the dimers assemble mutually independently. Additionally, such mutually independent assembly of the two heterodimers can be observed in another tripartite complex, Disks large homolog 1 (DLG1)/calcium-calmodulin-dependent serine protein kinase (CASK)/Mals2. Our results reveal a novel mechanism for tandem L27 domain-mediated, supramolecular complex assembly with a mutually independent mode.  相似文献   

14.
G protein-coupled receptors (GPCRs) initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells. In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEK-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2. In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.  相似文献   

15.
We recently reported a chemical genetic method for generating bivalent inhibitors of protein kinases. This method relies on the use of the DNA repair enzyme O(6)-alkylguanine-DNA alkyltransferase (AGT) to display an ATP-competitive inhibitor and a ligand that targets a secondary binding domain. With this method potent and selective inhibitors of the tyrosine kinases SRC and ABL were identified. Here, we dissect the molecular determinants of the potency and selectivity of these bivalent ligands. Systematic analysis of ATP-competitive inhibitors with varying linker lengths revealed that SRC and ABL have differential sensitivities to ligand presentation. Generation of bivalent constructs that contain ligands with differential affinities for the ATP-binding sites and SH3 domains of SRC and ABL demonstrated the modular nature of inhibitors based on the AGT scaffold. Furthermore, these studies revealed that the interaction between the SH3 domain ligand and the kinase SH3 domain is the major selectivity determinant amongst closely-related tyrosine kinases. Finally, the potency of bivalent inhibitors against distinct phospho-isoforms of SRC was determined. Overall, these results provide insight into how individual ligands can be modified to provide more potent and selective bivalent inhibitors of protein kinases.  相似文献   

16.
The design and synthesis of a novel series of c-jun N-terminal kinase (JNK3) inhibitors is described. The development and optimization of the 2-phenoxypyridine series was carried out from an earlier pyrimidine series of JNK1 inhibitors. Through the optimization of the scaffold 2, several potent compounds with good in vivo profiles were discovered.  相似文献   

17.
Protein kinase CK2 is a multi-subunit complex whose dynamic assembly appears as a crucial point of regulation. The ability to interfere with specific protein-protein interactions has already provided powerful means of influencing the functions of selected proteins within the cell. CK2beta-derived cyclopeptides that target a well-defined hydrophobic pocket on CK2alpha have been previously characterized as potent inhibitors of CK2 subunit assembly [9]. As a first step toward the rational design of low molecular weight CK2 antagonists, we have in the present study screened a collection of podophyllotoxine indolo-analogues to identify chemical inhibitors of the CK2 subunit interaction. We report the identification of a podophyllotoxine indolo-analogue as a chemical ligand that binds to the CK2alpha/CK2beta interface inducing selective disruption of the CK2alpha/CK2beta assembly and concomitant inhibition of CK2alpha activity.  相似文献   

18.
c-Yes kinase is considered as one of the attractive targets for anti-cancer drug design. The DFG (Asp-Phe-Gly) motif present in most of the kinases will adopt active and inactive conformations, known as DFG-in and DFG-out and their inhibitors are classified into type I and type II, respectively. In the present study, two screening protocols were followed for identification of c-Yes kinase inhibitors. (i) Structure-based virtual screening (SBVS) and (ii) Structure-based (SB) and Pharmacophore-based (PB) tandem screening. In SBVS, the c-Yes kinase structure was obtained from homology modeling and seven ensembles with different active site scaffolds through molecular dynamics (MD) simulations. For SB-PB tandem screening, we modeled ligand bound active and inactive conformations. Physicochemical properties of inhibitors of Src kinase family and c-Yes kinase were used to prepare target focused libraries for screenings. Our screening procedure along with docking showed 520 probable hits in SBVS and tandem screening (120 and 400, respectively). Out of 5000 compounds identified from different computational methods, 2410 were examined using kinase inhibition assays. It includes 266 compounds (5.32%) identified from our method. We observed that 14 compounds (12%) are identified by the present method out of 168 that showed > 30% inhibition. Among them, three compounds are novel, unique, and showed good inhibition. Further, we have studied the binding of these compounds at the DFG-in and DFG-out conformations and reported the probable class (type I or type II). Hence, we suggest that these compounds could be novel drug leads for regulation of colorectal cancer.  相似文献   

19.
An acquired T798M gatekeeper mutation in human epidermal growth factor receptor 2 (HER2) kinase can cause drug resistance to anti‐HER2 chemotherapy drugs in lung cancer. Previously, the reversible pan‐kinase inhibitor staurosporine has been found to selectively inhibit the HER2 T798M mutant over wild‐type kinase, suggesting that the staurosporine scaffold is potentially to develop mutant‐selective inhibitors. Here, we systematically evaluated the chemical space of staurosporine scaffold‐based compounds in response to HER2 T798M mutation at structural, energetic and molecular levels by using an integrated analysis strategy. With this strategy, we were able to identify several novel wild‐type sparing inhibitors with high or moderate selectivity, which are comparable to or even better than that of the parent compound staurosporine. Molecular modeling and structural analysis revealed that noncovalent contacts can form between the side chain of mutated residue Met798 and selective inhibitor ligands, which may improve the favorable interaction energy between the kinase and inhibitor and reduce the unfavorable desolvation penalty upon the kinase–inhibitor binding.  相似文献   

20.
The Akt kinase family, consisting of three isoforms in humans, is a well-validated class of drug target. Through various screening campaigns in academics and pharmaceutical industries, several promising inhibitors have been developed to date. However, due to the mechanistic and structural similarities of Akt kinases, it is yet a challenging task to discover selective inhibitors against a specific Akt isoform. We here report Akt-selective and also Akt2 isoform-selective inhibitors based on a thioether-macrocyclic peptide scaffold. Several anti-Akt2 peptides have been selected from a library by means of an in vitro display system, referred to as the RaPID (Random nonstandard Peptide Integrated Discovery) system. Remarkably, the majority of these "binding-active" anti-Akt2 peptides turned out to be "inhibitory active", exhibiting IC(50) values of approximately 100 nM. Moreover, these peptides are not only selective to the Akt kinase family but also isoform-selective to Akt2. Particularly, one referred to as Pakti-L1 is able to discriminate Akt2 250- and 40-fold over Akt1 and Akt3, respectively. This proof-of-concept case study suggests that the RaPID system has a tremendous potential for the discovery of unique inhibitors with high family- and isoform-selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号