首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three kinds of diphenyl ether herbicides, 4-nitrophenyl 2,4,6-trichlorophenyl ether (CNP, chlornitrofen), 2,4-dichlorophenyl 3-methoxy-4-nitrophenyl ether (chlomethoxynil) and 2,4-dichlorophenyl 3-methoxycarbonyl-4-nitrophenyl ether (bifenox), were tested for mutagenicity in Salmonella typhimurium YG1026 and YG1021, which have high nitroreductase activity, and also in S. typhimurium TA100 and TA98. CNP and chlomethoxynil showed mutagenicity in S. typhimurium YG1026, without S9 mix, inducing 50 and 304 revertants per μg. These mutagenicities were suppressed by the addition of S9 mix. CNP and chlomethoxynil were also mutagenic to YG1021 with and without S9 mix, and their mutagenicities were lower than those to YG1026. On the other hand, bifenox was mutagenic to YG1026 only with S9 mix, inducing 3.0 revertants per μg. These three herbicides showed no mutagenicity in S. typhimurium TA100 and TA98 either with or without S9 mix.  相似文献   

2.
《Mutation Research Letters》1993,301(4):213-222
Alkylhydrazines are important carcinogens. However, they show generally only weak mutagenicity and the activities reported from different laboratories are contradictory. We have developed a sensitive method to detect the mutagenicity of alkylhydrazines. The method is based on a modified preculturing procedures in the Ames test, the emphasis in the modification being a change in the growth period of tester strains. The optimal growth periods were found to be 11 h in Salmonella typhimurium TA100 and 5 h in Salmonella typhimurium TA102. We tested the mutagenic activity of 12 alkylhydrazines; 1,2-dimetehylhydrazine, 1,2-diethylhydrazine, 1,2-dipropylhydrazine. 1,2-dibutylhydrazine, 1,1-dimethylhydrazine, 1,1-diethylhydrazine, 1,1-dipropylhydrazine, 1,1-dibutylhydrazine, methylhydrazine, ethylhydrazine, propylhydrazine, and butylhdyrazine. All 12 alkylhydrazines were clearly mutagenic in Salmonella typhimurium TA102, and 10 hydrazines were mutagenic in Salmonella typhimurium TA100, both in the absence of S9 mix. The mutagenicity was inhibited by the addition of S9 mix or bovine serum albumin. This suggests deactivation of the mutagens by proteins.  相似文献   

3.
Ten imidazole derivatives were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 both in the absence and presence of metabolic activation by the microsomal fraction S9 mix. In a general manner, derivatives tested exhibited a greater mutagenic activity in the TA100 strain comparing to the responses in TA 98. In the standard plate incorporation assay, 8 of these substances (80%) were found to be mutagenic for at least one of the two strains in the presence or absence of metabolic activation. Two compounds showed positive results in TA98 and 6 compounds were also mutagenic in TA100 without S9. In the presence of S9 mix, all of the 10 substances were non-mutagenic in TA98, whereas 4 compounds were positive in TA100. The results suggested the mutagenic potentials of the imidazole derivatives particularly inducing the reversion of base-pair substitutions. According to the structure-activity relationships phenyl groups in position 2 with different substituents can confer the mutagenic activity of the tested compounds. Methyl groups in different positions of these phenyl substituents can cause different types of mutations. This mutagenic effect is observed more clearly when the phenyl group is inhibited with a nitro group.  相似文献   

4.
The mutagenicity of the algaPleurochrysis carterae for use as human food was tested by the Ames method with the modification of pre-incubation, by usingSalmonella typhimurium TA98, TA100, TA1535, TA1537 andEscherichia coli WP2uvrA. The freeze-dried powder ofP. carterae was not mutagenic to any strain either with or without S9 mix. In view of the absence of adverse effects ofP. carterae in this mutagenicity study, it is suggested thatP. carterae is safe for human consumption as a human food supplement.Author for correspondence  相似文献   

5.
《Mutation Research Letters》1991,262(3):203-207
In order to elucidate the mechanisms of mutagenic activation of nitrobiphenyls by mammalian activation systems, 2,4,2′,4′-tetranitrobiphenyl was incubated with S9 and its mutagenic metabolites were separated by SiO2 and Al2O3 column chromatography. The most mutagenic diamino-dinitrobiphenyl was isolated from the reaction mixture of 2,4,2′ ,4′-tetranitrobiphenyl with S9 mix at 37°C for 48 h, and its mutability was 4646 revertants/50 ng in Salmonella typhimurium TA98 without S9 mix. The deamination product of this most mutagenic metabolite was identical to 2,4′-dinitrobiphenyl by gas chromatography-mass spectrometry. Therefore, the structure of the metabolite was determined as 2,4′-diamino-2′,4-dinitrobiphenyl by its chemical and physico-chemical properties.  相似文献   

6.
Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components.  相似文献   

7.
Mutagenicity of 6-aminoquinoxaline derivatives was tested with Salmonella typhimurium strains Ta98 and TA100 in the presence and absence of S9 mix from the viewpoint that the 6-aminoquinoxaline skeleton is a common unit of mutagenic imidazoquinoxalines. We tested nine compounds: 5-methyl-6-methylaminoquinoxaline (1), 3,5-dimethyl-6-methylaminoquinoxaline (2), 2,5-dimethyl-6-metnylaminoquinoxaline (3), 6-methylamino-2,3,5-trimethylquinoxaline (4), 2,3-diethyl-5-methyl-6-methylaminoquinoxaline (5), 5-methyl-6-methylamino 3-phenylquinoxaline (6), 6-amino-2,3,5-trimethylquinoxaline (7), 6-dimethylamino-2,3-5-trimethylaminoquinoxaline (8), 6-amino-2,3-dimethylquinoxaline (9). These compounds showed the mutagenic activity for both TA98 and TA100 in the presence of S9 mix, where they were more sensitive for TA100 strain. Methyl groups at the 2, 3 and/or 5 positions increased the potency of mutagenicity (1 < 2 < 3 ⪡ 4, 9 < 7). However, ethyl groups at the 2 and 3 positions lowered the mutagenicity of the methyl substitute but elevated it of the parental compound (1 < 5 < 4). A methyl group at the N6 position decreased the mutagenicity (7 > 4 > 8).  相似文献   

8.
AimThe evaluation of mutagenic properties of imidapril hydrochloride (IMD) and its degradation impurity, diketopiperazine derivative (DKP), nitrosation mixtures was conducted in order to analyze the carcinogenic risk of IMD long-term treatment in patients. In this study an in vitro Ames test with Salmonella enterica serovar Typhimurium TA 98 and TA 100 strains was used.BackgroundIMD and DKP contain nitrogen atoms, which makes them theoretically vulnerable to in vivo nitrosation with the production of N-nitroso compounds (NOC). NOC, in turn, are known animal mutagens indicating that their endogenous production from nitrosable drugs constitutes a carcinogenic hazard.Materials and methodsPure IMD sample was exposed to forced degradation conditions of increased temperature and dry air in order to achieve a DKP sample. Both samples were then treated with a nitrosating agent and the obtained nitrosation mixtures were subjected to mutagenicity analysis by the Ames test with S. typhimurium TA 98 and TA 100 strains in the presence and absence of metabolic activation system (S9 mix) using a commercial Ames MPF 98/100 microplate format mutagenicity assay kit.ResultsNone of the six concentrations of the investigated nitrosation mixtures exhibited any mutagenic potential in both S. typhimurium strains. The addition of S9 mix did not alter the non-mutagenic properties of the studied compounds.ConclusionsThe nitrite treatment of both studied compounds has no impact on their mutagenic properties under the conditions of the present studies. Hence, IMD and DKP nitrosation mixtures are classified as non-mutagens in this test.  相似文献   

9.
The coccidiostat diaveridine was tested for mutagenicity in the Salmonella/microsome assay with tester strains TA100 and TA98. This compound was not mutagenic in either tester strain in the presence and absence of rat S9 mix, but was found to be mutagenic in strain TA100 after metabolic activation with hamster S9 mix.  相似文献   

10.
To identify the major mutagen in pyroligneous acid (PA), 10 wood and 10 bamboo pyroligneous acids were examined using the Ames test in Salmonella typhimurium strains TA100 and TA98. Subsequently, the mutagenic dicarbonyl compounds (DCs), glyoxal, methylglyoxal (MG), and diacetyl in PA were quantified using high-performance liquid chromatography, and the mutagenic contribution ratios for each DC were calculated relative to the mutagenicity of PA. Eighteen samples were positive for mutagens and showed the strongest mutagenicity in TA100 in the absence of S9 mix. MG had the highest mutagenic contribution ratio, and its presence was strongly correlated with the specific mutagenicity of PA. These data indicate that MG is the major mutagen in PA.  相似文献   

11.
The Pinus wallichiana, Daphne oleiodes and Bidens chinensis have a long history of being used traditionally for treatment of various types of disorders. Most of the uses have been without any scientific evidence and toxicological assessment. We evaluated the mutagenic and cytotoxic capabilities of various parts of P. wallichiana, D. oleoides and B. chinensis. Ames Salmonella mutagenicity assay determined the mutagenicity activity against TA 98 and TA 100 bacterial strains of Salmonella typhimurium without metabolic activator S9 system. The number of mutant colonies in negative control was considered as limit to determine the mutagenicity effects of every extract. Brine shrimps lethality bioassay was used to determine the cytotoxic capabilities of the selected plants. The P. wallichiana, D. oleiodes and B. chinensis did not showed any mutagenic activity both for frameshift mutation (TA98) and base-pair substitution (TA100) without S9 mixture. The crude methanolic extract of P. wallichiana stem showed moderate cytotoxicity (53.33%) at 1000 μg/ml with LD50 value 599.634. The D. oleoides fruit showed a toxicity of 60% at 1000 μg/ml with LD50 value 367.730. The B. chinensis (whole plant) showed lethality of 63.3% at 1000 μg/ml, with LD50 204.833. The absence of any mutagenic activity of crude extract of the tested plants in both bacteria strains, TA 98 and TA 100 without the S9 mix confirms the safety of these plants to the consumers.  相似文献   

12.
Mutagenicity and co-mutagenicity of glyco- and tauro-deoxycholic acids (GDCA and TDCA), which are abundant in human bile, were examined by the Ames test. The two chemicals were not mutagenic for themselves to Salmonella typhimurium TA98 and TA100, with and without S9 mix. They enhanced, however, the mutagenic activities of the pro-mutagens, 2-aminoanthracene (2AA) and benzo[a]pyrene (BaP), for both TA98 and TA100 with S9 mix. They were more co-mutagenic for the pro-mutagens on TA98 than on TA100. On TA98, the mutagenic activities of 2AA with GDCA (5 μmol/plate) and with TDCA (5 μmol/plate) were 9.7-fold and 11.8-fold as high as that of the corresponding control (2AA only), respectively. BaP with GDCA (2.5 μmol/plate) and with TDCA (2.5 μmol/plate) showed 2.8-fold and 3.0-fold increases over the corresponding control level (BaP only), respectively. It is hence concluded that GDCA and TDCA may enhance the activity of some mutagens existing in bile.  相似文献   

13.
The plant cell/microbe coincubation assay is based on employing living tobacco cells in suspension culture as the activating system for promutagens and the Ames/Salmonella cells as the genetic indicator system. In contrast to aromatic amines(e.g. 2-aminofluorene andm-phenylenediamine) that were previously reported to be activated to products mutagenic in theS. typhimurium strains TA98 or YG1024 by tobacco cells, promutagenic N-nitrosoamines (N-nitrosodimethylamine, N-nitroso-morpholine, N-nitrosopiperidine, N-nitrosomethyl-2-hydroxypropylamine) were not activated to product(s) mutagenic inS. typhimurium TA 100.  相似文献   

14.
Quercetin, rhamnetin, isorhamnetin, apigenin and luteolin were isolated from medicinal herbs: Erigeron canadensis L., Anthyllis vulneraria L. and Pyrola chloranta L. The mutagenicity of these naturally occurring flavonoids was tested by the Ames method with S. typhimurium strains TA1535, TA1538, TA97, TA98, TA100 and TA102 in the presence and absence of metabolic activation. Of the above flavonoids only quercetin and rhamnetin revealed mutagenic activity in the Ames test. Quercetin induced point mutations in strains TA97, TA98, TA100 and TA102 of S. typhimurium. The presence of S9 rat liver microsome fraction markedly enhanced the mutagenic activity of quercetin in these strains. Rhamnetin appeared to be a much weaker mutagen in the Ames test. The compound induced mutations in strains TA97, TA98 and TA100 of S. typhimurium but only in the presence of metabolic activation.Comparison of the structure of the studied flavonoids with their mutagenic activity indicates that the mutagenicity of flavonoids is dependent on the presence of hydroxyl groups in the 3′ and 4′ positions of the B ring, and that the presence of a free hydroxy or methoxy group in the 7 position of the A ring also probably contributes to the appearance of mutagenic activity of flavonoids in the Ames test. It also appeared that the presence of methoxy groups, particularly in the B ring of the flavonoid molecule, markedly decreases the mutagenic activity of the compound.  相似文献   

15.
3 epoxy-resin hardeners, 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane (DDM), and 4,4'-diaminodiphenylsulfone (DDS), and their N-acetyl and N,N'-diacetyl derivatives were examined for their mutagenicity using Salmonella typhimurium TA98 and TA100 as the tester stains and an S9 mix containing a rat-liver 9000 X g supernatant fraction as the metabolic activation system. DDE and DDM were mutagenic towards TA98 and TA100 in the presence of S9 mix while DDS exhibited no significant mutagenic activity towards these tester strains. These epoxy-resin hardeners were metabolized in vivo and their N-acetyl and N,N'-diacetyl metabolites were found in the urine. Among these acetyl metabolites, only N-acetyl-DDE was found to be mutagenic towards TA98 and TA100 in the presence of S9 mix. None of these acetyl metabolites exhibited significant mutagenic activity towards these tester strains in the absence of S9 mix.  相似文献   

16.
Dibenzo-p-dioxin (DD) was made to react with various concentrations of nitrogen oxides in the dark. The mutagenicities of the reaction products were tested using Salmonella typhimurium strains TA98, TA100, TA98NR and TA98/1,8-DNP6 in the presence or absence of a mammalian metabolic activation system (S9 mix). DD-NOx (molar ratios 1:3, 1:6 and 1:18) reaction products exhibited mutagenic potency in strains TA98 and TA98/1,8-DNP6 without S9 mix. In a gas chromatography/mass spectrometry study, 2-nitrodibenzo-p-dioxin (NDD) was identified with authentic sample in the mutagenic reaction products. DD-NOx (1:18) reaction products were reduced by sodium hydrogen sulfide and the reduction mixture was analyzed by HPLC. 2,7-Dinitrodibenzo-p-dioxin (DNDD) and 2,8-DNDD were identified as corresponding diamino-DDs in the reduction mixture. 2-NDD, 2,7-DNDD and 2,8-DNDD were also mutagenic in strains TA98 and TA98/1,8-DNP6 without S9 mix and the mutagenicity of DD-NOx reaction products was largely accounted for by the nitro-DDs.  相似文献   

17.
The mutagenicity of products formed by ozonation of naphthoresorcinol in aqueous solution was assayed with Salmonella typhimurium strains TA97, TA98, TA100, TA102 and TA104 in the presence and absence of S9 mix from phenobarbital- and 5,6-benzoflavone-induced rat liver. Ozonated naphthoresorcinol was mutagenic in TA97, TA98, TA100 and TA104 without S9 mix. By the addition of S9 mix, the mutagenic activity of ozonated naphthoresorcinol was markedly suppressed in TA98 and TA100, but became positive in TA102. High-performance liquid chromatography (HPLC) after derivatization to 2,4-dinitrophenylhydrazones demonstrated the formation of glyoxal as an ozonation product of naphthoresorcinol. Ion chromatographic technique also demonstrated the formation of o-phthalic acid, muconic acid, maleic acid, mesoxalic acid, glyoxylic acid and oxalic acid as ozonation products. The mutagenicity assays of these identified products with five Salmonella showed that glyoxal and glyoxylic acid were directly mutagenic; the former in TA100, TA102 and TA104, the latter in TA97, TA100 and TA104. In the presence of S9 mix, glyoxylic acid gave a positive response of mutagenicity for TA102. The experimental evidence supported that glyoxal and glyoxylic acid may contribute to the mutagenicity of ozonated naphthoresorcinol.  相似文献   

18.
Background and objectiveGenotoxicity analysis is one of the most important non-clinical environmental safety investigations required for pharmaceutical and agrochemical product registration. Any medicinal product must undergo a risk evaluation to determine its mutagenicity and carcinogenicity.Materials and methodsThe Ames test is a commonly used in vitro test for determining a test chemical's mutagenic activity. Histidine-dependent Salmonella typhimurium strains with a defective gene that causes the bacteria to synthesis the necessary amino acid histidine for life were tested for mutagenic potential. In order to reveal pro-mutagens and mutagens, the mutagenic potential of both plate integration and pre-incubation techniques was examined in the presence and absence of metabolizing system. Salacia chinensis has been widely used in ayurveda to treat various ailments. However, the information of mutagenicity of Salacia chinensis is scarce as per available literature.ResultsThe mutagenicity of a Salacia chinensis root extract was investigated utilizing the Ames assay with plate incorporation and pre-incubation protocols using the appropriate Salmonella typhimurium tester strains: TA98, TA100, TA1537, TA1535, and TA102 in the presence and absence of S9. The concentrations used were 0.3123, 0.625, 1.25, 2.5 and 5 mg/plate. The extract of Salacia chinensis root did not show any mutagenic effect in any of the Salmonella typhimurium strains at the concentrations tested in the absence or presence of metabolic activation.ConclusionThe root of Salacia chinensis was hence confirmed to be non-mutagenic and at least according to the results of this genotoxicity evaluation can be regarded as being safe for human use.  相似文献   

19.
Recep Liman 《Cytotechnology》2014,66(5):741-751
Mutagenic and genotoxic effects of dicapthon were investigated by using the bacterial reverse mutation assay in Salmonella typhimurium TA97, TA98, TA100 and TA102 strains with or without metabolic activation system (S9 mix), and chromosome aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) tests in human peripheral blood lymphocytes in vitro. Dicapthon was dissolved in dimethyl sulfoxide for all test systems. 0.1, 1, 10 and 100 μg/plate doses of dicapthon were found to be weakly mutagenic on S. typhimurium TA 98 without S9 mix. The human peripheral lymphocytes were treated with four experimental concentrations of dicapthon (25, 50, 100, and 200 μg/mL) for 24 and 48 h. Dicapthon increased the frequency of SCE only at the 100 μg/mL concentration for the 24 and 48 h applications. Dicapthon also induced abnormal cell frequency, CA/cell ratio and frequency of MN dose dependently for 24 and 48 h. Dicapthon showed a statistically significant cytotoxic effect by decreasing the mitotic index in all concentrations and a cytostatic effect by decreasing nuclear division index in 100 and 200 μg/mL concentrations for both treatment periods when compared with both untreated and solvent controls. These values decreased also in a dose dependent manner.  相似文献   

20.
Assessing urine mutagenicity with the Salmonella mutagenicity test is often limited by the volumes of the samples. Optimization of the assay was performed with factorial and Doehlert designs. Two fractional factorial designs 23-1 (3 factors, 4 experiments) were used to estimate the main effects of the percent S9 in the mix, the time of liquid incubation, the inoculum size and the growth conditions. A Doehlert design (3 factors, 13 experiments) was used to study the main effects and the interactions of the NADP, G6P and S9 in the mix. The positive markers were benzo[a]pyrene (BaP, 0.3 μg/plate) and a pool of smokers' urine (SU, 1.25 ml equivalent/plate). The response was limited to the induction factor (IF, number of induced revertants/number of spontaneous revertants) with Salmonella typhimurium TA98. The optimal conditions for BaP were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 50 ml of Nutrient Broth No. 2 from a 250 ml flask. The S9 mix (0.1 ml, final volume) included 1.5% of S9, 1.0 mM NADP and 4.4 mM G6P. The maximal IF was 15.79. The optimal conditions for SU were: a 60 min period of liquid incubation and a volume of 0.1 ml (approx. 108 cells/plate) of an overnight culture grown in 7 ml of Nutrient Broth No. 2 from a 20 × 180 mm tube. The S9 mix (0.1 ml, final volume) included: 4% S9, 4.2 mM NADP and 5.2 mM G6P. The maximal I7F was 10.95. These optimal conditions did not modify the spontaneous frequencies of the tester strains: TA97a, TA98, TA100 and TA102. The dose-response curves of mutagenic urine samples were found to be non-linear. This micromethod required 8-fold less urine sample and 12.5-fold less liver homogenate as compared to the standard plate incorporation assay and was from 6.2- to 11.8-fold more sensitive to evaluate urine mutagenicity. The sensitivity of this technique was found to be limited to individuals smoking more than approx. 5 cigarettes/day by the standard extraction-concentration procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号