首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholipase D (PLD), an important enzyme involved in signal transduction in mammals, is also secreted by many microorganisms. A highly conserved HKD motif has been identified in most PLD homologs in the PLD superfamily. However, the Ca(2+)-dependent PLD from Streptomyces chromofuscus exhibits little homology to other PLDs. We have cloned (using DNA isolated from the ATCC type strain), overexpressed in Escherichia coli (two expression systems, pET-23a(+) and pTYB11), and purified the S. chromofuscus PLD. Based on attempts at sequence alignment with other known Ca(2+)-independent PLD enzymes from Streptomyces species, we mutated five histidine residues (His72, His171, His187, His200, His226) that could be part of variants of an HKD motif. Only H187A and H200A showed dramatically reduced activity. However, mutation of these histidine residues to alanine also significantly altered the secondary structure of PLD. Asparagine replacements at these positions yielded enzymes with structure and activity similar to the recombinant wild-type PLD. The extent of phosphatidic acid (PA) activation of PC hydrolysis by the recombinant PLD enzymes differed in magnitude from PLD purified from S. chromofuscus culture medium (a 2-fold activation rather than 4-5-fold). One of the His mutants, H226A, showed a 12-fold enhancement by PA, suggesting this residue is involved in the kinetic activation. Another notable difference of this bacterial PLD from others is that it has a single cysteine (Cys123); other Streptomyces Ca(2+)-independent PLDs have eight Cys involved in intramolecular disulfide bonds. Both C123A and C123S, with secondary structure and stability similar to recombinant wild-type PLD, exhibited specific activity reduced by 10(-5) and 10(-4). The Cys mutants still bound Ca(2+), so that it is likely that this residue is part of the active site of the Ca(2+)-dependent PLD. This would suggest that S. chromofuscus PLD is a member of a new class of PLD enzymes.  相似文献   

2.
We have recently shown that two flexible loops of Streptomyces phospholipase D (PLD) affect the catalytic reaction of the enzyme by a comparative study of chimeric PLDs. Gly188 and Asp191 of PLD from Streptomyces septatus TH-2 (TH-2PLD) were identified as the key amino acid residues involved in the recognition of phospholipids. In the present study, we further investigated the relationship between a C-terminal loop of TH-2PLD and PLD activities to elucidate the reaction mechanism and the recognition of the substrate. By analyzing chimeras and mutants in terms of hydrolytic and transphosphatidylation activities, Ala426 and Lys438 of TH-2PLD were identified as the residues associated with the activities. We found that Gly188 and Asp191 recognized substrate forms, whereas residues Ala426 and Lys438 enhanced transphosphatidylation and hydrolysis activities regardless of the substrate form. By substituting Ala426 and Lys438 with Phe and His, respectively, the mutant showed not only higher activities but also higher thermostability and tolerance against organic solvents. Furthermore, the mutant also improved the selectivity of the transphosphatidylation activity. The residues Ala426 and Lys438 were located in the C-terminal flexible loop of Streptomyces PLD separate from the highly conserved catalytic HxKxxxxD motifs. We demonstrated that this C-terminal loop, which formed the entrance of the active well, has multiple functional roles in Streptomyces PLD.  相似文献   

3.
Indoleglycerol phosphate synthase catalyzes the ring closure of an N-alkylated anthranilate to a 3-alkyl indole derivative, a reaction requiring Lewis acid catalysis in vitro. Here, we investigated the enzymatic reaction mechanism through X-ray crystallography of complexes of the hyperthermostable enzyme from Sulfolobus solfataricus with the substrate 1-(o-carboxyphenylamino) 1-deoxyribulose 5-phosphate, a substrate analogue and the product indole-3-glycerol phosphate. The substrate and the substrate analogue are bound to the active site in a similar, extended conformation between the previously identified phosphate binding site and a hydrophobic pocket for the anthranilate moiety. This binding mode is unproductive, because the carbon atoms that are to be joined are too far apart. The indole ring of the bound product resides in a second hydrophobic pocket adjacent to that of the anthranilate moiety of the substrate. Although the hydrophobic moiety of the substrate moves during catalysis from one hydrophobic pocket to the other, the triosephosphate moiety remains rigidly bound to the same set of hydrogen-bonding residues. Simultaneously, the catalytically important residues Lys53, Lys110 and Glu159 maintain favourable distances to the atoms of the ligand undergoing covalent changes. On the basis of these data, the structures of two putative catalytic intermediates were modelled into the active site. This new structural information and the modelling studies provide further insight into the mechanism of enzyme-catalyzed indole synthesis. The charged epsilon-amino group of Lys110 is the general acid, and the carboxylate group of Glu159 is the general base. Lys53 guides the substrate undergoing conformational transitions during catalysis, by forming a salt-bridge to the carboxylate group of its anthranilate moiety.  相似文献   

4.
The X-ray crystal structure for the adduct of human carbonic anhydrase II (hCA II) with 4-(4-sulfamoylphenylcarboxamidoethyl)benzenesulfonamide, a topically acting antiglaucoma sulfonamide has been resolved at a resolution of 1.8 A. Its binding to the enzyme is similar with that of other sulfonamides, considering the interactions of the sulfonamide zinc anchoring group, but differs considerably when the organic part of the inhibitor is analyzed. This part of the inhibitor interacts only within the hydrophobic half of the CA active site, leaving the hydrophilic half able to accomodate several water molecules not present in the uncomplexed enzyme. Furthermore, the second head (sulfonamide moiety) participates in two strong hydrogen bonds with amino acid residues (Gly 132 and Gln 136) situated on the rim of the entrance to the active site cleft. Thus, the answer to the question in the title of this paper is that two heads are better than one, since the two sulfamoyl moieties of the inhibitor allow its proper orientation within the active site, with only one head binding in ionized form to the zinc ion, the organic part lying within the hydrophobic half of the active site, and the terminal, carboxamido containing phenylsulfamoyl head participating in strong hydrogen bonds with amino acid residues located at the entrance of it. All these findings are important for the design of better carboxamido CA inhibitors with applications in clinical medicine.  相似文献   

5.
The X-ray structure of the complex formed between yeast 5-aminolaevulinic acid dehydratase (ALAD) and the inhibitor laevulinic acid has been determined at 2.15 A resolution. The inhibitor binds by forming a Schiff base link with one of the two invariant lysines at the catalytic center: Lys263. It is known that this lysine forms a Schiff base link with substrate bound at the enzyme's so-called P-site. The carboxyl group of laevulinic acid makes hydrogen bonds with the side-chain-OH groups of Tyr329 and Ser290, as well as with the main-chain >NH group of Ser290. The aliphatic moiety of the inhibitor makes hydrophobic interactions with surrounding aromatic residues in the protein including Phe219, which resides in the flap covering the active site. Our analysis strongly suggests that the same interactions will be made by P-side substrate and also indicates that the substrate that binds at the enzyme's A-site will interact with the enzyme's zinc ion bound by three cysteines (133, 135, and 143). Inhibitor binding caused a substantial ordering of the active site flap (residues 217-235), which was largely invisible in the native electron density map and indicates that this highly conserved yet flexible region has a specific role in substrate binding during catalysis.  相似文献   

6.
2‐arachidonyl glycerol (2‐AG) allosterically potentiates GABAA receptors via a binding site located in transmembrane segment M4 of the β2 subunit. Two amino acid residues have been described that are essential for this effect. With the aim to further describe this potential drug target, we performed a cysteine scanning of the entire M4 and part of M3. All four residues in M4 affecting the potentiation here and the two already identified residues locate to the same side of the α‐helix. This side is exposed to M3, where further residues were identified. From the fact that the important residues span > 18 Å, we conclude that the hydrophobic tail of the bound 2‐AG molecule must be near linear and that the site mainly locates to the inner leaflet but stretches far into the membrane. The influence of the structure of the head group of the ligand molecule on the activity of the molecule was also investigated. We present a model of 2‐AG docked to the GABAA receptor.  相似文献   

7.
We have isolated a polylactide or poly(L-lactic acid) (PLA)-degrading bacterium, Amycolatopsis sp. strain K104-1, and purified PLA depolymerase (PLD) from the culture fluid of the bacterium. Here, we cloned and expressed the pld gene encoding PLD in Streptomyces lividans 1326 and characterized a recombinant PLD (rPLD) preparation. We also describe the processing mechanism from nascent PLD to mature PLD. The pld gene encodes PLD as a 24,225-Da polypeptide consisting of 238 amino acids. Biochemical and Western immunoblot analyses of PLD and its precursors revealed that PLD is synthesized as a precursor (prepro-type), requiring proteolytic cleavage of the N-terminal 35-amino-acid extension including the 26-amino-acid signal sequence and 9-residue prosequence to generate the mature enzyme of 20,904 Da. The cleavage of the prosequence was found to be autocatalytic. PLD showed about 45% similarity to many eukaryotic serine proteases. In addition, three amino acid residues, H57, D102, and S195 (chymotrypsin numbering), which are implicated in forming the catalytic triad necessary for cleavage of amide bond of substrates in eukaryotic serine proteases, were conserved in PLD as residues H74, D111, and S197. The G193 residue (chymotrypsin numbering), which is implicated in forming an oxyanion hole with residue S195 and forms an important hydrogen bond for interaction with the carbonyl group of the scissile peptide bond, was also conserved in PLD. The functional analysis of the PLD mutants H74A, D111A, and S197A revealed that residues H74, D111, and S197 are important for the depolymerase and caseinolytic activities of PLD and for cleavage of the prosequence from pro-type PLD to form the mature one. The PLD preparation had elastase activity which was not inhibited by 1 mM elastatinal, which is 10 times higher than needed for complete inhibition of porcine pancreatic elastase. The rPLD preparation degraded PLA with an average molecular mass of 220 kDa into lactic acid dimers through lactic acid oligomers and finally into lactic acid. The PLD preparation bound to high polymers of 3-hydoxybutyrate, epsilon-caprolacton, and butylene succinate as well as PLA, but it degraded only PLA.  相似文献   

8.
Chandra V  Jasti J  Kaur P  Srinivasan A  Betzel Ch  Singh TP 《Biochemistry》2002,41(36):10914-10919
This is the first structural observation of a plant product showing high affinity for phospholipase A(2) and regulating the synthesis of arachidonic acid, an intermediate in the production of prostaglandins. The crystal structure of a complex formed between Vipera russelli phospholipase A(2) and a plant alkaloid aristolochic acid has been determined and refined to 1.7 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) in the form of an asymmetric dimer with one molecule of aristolochic acid bound to one of them specifically. The most significant differences introduced by asymmetric molecular association in the structures of two molecules pertain to the conformations of their calcium binding loops, beta-wings, and the C-terminal regions. These differences are associated with a unique conformational behavior of Trp(31). Trp(31) is located at the entrance of the characteristic hydrophobic channel which works as a passage to the active site residues in the enzyme. In the case of molecule A, Trp(31) is found at the interface of two molecules and it forms a number of hydrophobic interactions with the residues of molecule B. Consequently, it is pulled outwardly, leaving the mouth of the hydrophobic channel wide open. On the other hand, Trp(31) in molecule B is exposed to the surface and moves inwardly due to the polar environment on the molecular surface, thus narrowing the opening of the hydrophobic channel. As a result, the aristolochic acid is bound to molecule A only while the binding site of molecule B is empty. It is noteworthy that the most critical interactions in the binding of aristolochic acid are provided by its OH group which forms two hydrogen bonds, one each with His(48) and Asp(49).  相似文献   

9.
To investigate the contribution of amino acid residues to the thermostability of phospholipase D (PLD), a chimeric form of two Streptomyces PLDs (thermolabile K1PLD and thermostable TH-2PLD) was constructed. K/T/KPLD, in which residues 329-441 of K1PLD were recombined with the homologous region of TH-2PLD, showed a thermostability midway between those of K1PLD and TH-2PLD. By comparing the primary structures of Streptomyces PLDs, the seven candidates of thermostability-related amino acid residues of K1PLD were identified. The K1E346DPLD mutant, in which Glu346 of K1PLD was substituted with Asp by site-directed mutagenesis, exhibited enhanced thermostability, which was almost the same as that of TH-2PLD.  相似文献   

10.
The structure of the type II DHQase from Streptomyces coelicolor has been solved and refined to high resolution in complexes with a number of ligands, including dehydroshikimate and a rationally designed transition state analogue, 2,3-anhydro-quinic acid. These structures define the active site of the enzyme and the role of key amino acid residues and provide snap shots of the catalytic cycle. The resolution of the flexible lid domain (residues 21-31) shows that the invariant residues Arg23 and Tyr28 close over the active site cleft. The tyrosine acts as the base in the initial proton abstraction, and evidence is provided that the reaction proceeds via an enol intermediate. The active site of the structure of DHQase in complex with the transition state analog also includes molecules of tartrate and glycerol, which provide a basis for further inhibitor design.  相似文献   

11.
Human microsomal cytochrome P-450 2E1 (CYP2E1) monooxygenates > 70 low molecular weight xenobiotic compounds, as well as much larger endogenous fatty acid signaling molecules such as arachidonic acid. In the process, CYP2E1 can generate toxic or carcinogenic compounds, as occurs with acetaminophen overdose, nitrosamines in cigarette smoke, and reactive oxygen species from uncoupled catalysis. Thus, the diverse roles that CYP2E1 has in normal physiology, toxicity, and drug metabolism are related to its ability to metabolize diverse classes of ligands, but the structural basis for this was previously unknown. Structures of human CYP2E1 have been solved to 2.2 angstroms for an indazole complex and 2.6 angstroms for a 4-methylpyrazole complex. Both inhibitors bind to the heme iron and hydrogen bond to Thr303 within the active site. Complementing its small molecular weight substrates, the hydrophobic CYP2E1 active site is the smallest yet observed for a human cytochrome P-450. The CYP2E1 active site also has two adjacent voids: one enclosed above the I helix and the other forming a channel to the protein surface. Minor repositioning of the Phe478 aromatic ring that separates the active site and access channel would allow the carboxylate of fatty acid substrates to interact with conserved 216QXXNN220 residues in the access channel while positioning the hydrocarbon terminus in the active site, consistent with experimentally observed omega-1 hydroxylation of saturated fatty acids. Thus, these structures provide insights into the ability of CYP2E1 to effectively bind and metabolize both small molecule substrates and fatty acids.  相似文献   

12.
The genes of two phospholipase D (PLD) isoenzymes, PLD1 and PLD2, from poppy seedlings (2829 and 2828 bp) were completely sequenced. The two genes have 96.9% identity in the encoding region and can be assigned to the alpha-type of plant PLDs. The corresponding amino acid sequences do not contain any signal sequences. One Asn-glycosylation site, six and two phosphorylation sites for protein kinase C and tyrosine kinase, respectively, and two phosphatidylinositol-4,5-bisphosphate binding motifs could be identified. Like in most plant PLDs, two HKD motifs and one C2 domain are present. PLD1 and PLD2 have ten and nine cysteine residues. The two enzymes were expressed in E. coli and purified to homogeneity by Ca2+ ion-mediated hydrophobic interaction chromatography. The Ca2+ ion concentration needed for carrier binding of the two enzymes in chromatography as well as for optimum activity was found to be considerably higher (>100 mM) than with other alpha-type plant PLDs. Although PLD1 and PLD2 differ in eleven amino acids only, they showed remarkable differences in their transphosphatidylation activity. Two amino acid exchanges within and near the first HKD motif contribute to this difference as shown by the A349E/E352Q-variant of PLD2.  相似文献   

13.
Recently, we identified Ala426 and Lys438 of phospholipase D from Streptomyces septatus TH-2 (TH-2PLD) as important residues for activity, stability and selectivity in transphosphatidylation. These residues are located in a C-terminal flexible loop separate from two catalytic HxKxxxxD motifs. To study the role of these residues in substrate recognition, we evaluated the affinities of inactive mutants, in which these residues were substituted with Phe and His, toward several phospholipids by SPR analysis. By substituting Ala426 and Lys438 with Phe and His, respectively, the inactive mutant showed a much stronger interaction with phosphatidylcholine and a weaker interaction with phosphatidylglycerol than the inactive TH-2PLD mutant. We demonstrated that Ala426 and Lys438 of TH-2PLD play a role in sensing the head group of phospholipids.  相似文献   

14.
The X-ray structures of Aspergillus oryzae aspartic proteinase (AOAP) and its complex with inhibitor pepstatin have been determined at 1.9A resolution. AOAP was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=49.4A, b=79.4A, and c=93.6A. By the soaking of pepstatin, crystals are transformed into a monoclinic system with the space group C2 and cell dimensions of a=106.8A, b=38.6A, c=78.7A, and beta=120.3 degrees. The structures of AOAP and AOAP/pepstatin complex were refined to an R-factor of 0.177 (R(free)=0.213) and of 0.185 (0.221), respectively. AOAP has a crescent-shaped structure with two lobes (N-lobe and C-lobe) and the deep active site cleft is constructed between them. At the center of the active site cleft, two Asp residues (Asp33 and Asp214) form the active dyad with a hydrogen bonding solvent molecule between them. Pepstatin binds to the active site cleft via hydrogen bonds and hydrophobic interactions with the enzyme. The structures of AOAP and AOAP/pepstatin complex including interactions between the enzyme and pepstatin are very similar to those of other structure-solved aspartic proteinases and their complexes with pepstatin. Generally, aspartic proteinases cleave a peptide bond between hydrophobic amino acid residues, but AOAP can also recognize the Lys/Arg residue as well as hydrophobic amino acid residues, leading to the activation of trypsinogen and chymotrypsinogen. The X-ray structure of AOAP/pepstatin complex and preliminary modeling show two possible sites of recognition for the positively charged groups of Lys/Arg residues around the active site of AOAP.  相似文献   

15.
The active site of type A or B influenza virus neuraminidase is composed of 11 conserved residues that directly interact with the substrate, sialic acid. An aromatic benzene ring has been used to replace the pyranose of sialic acid in our design of novel neuraminidase inhibitors. A bis(hydroxymethyl)pyrrolidinone ring was constructed in place of the N-acetyl group on the sialic acid. The hydroxymethyl groups replace two active site water molecules, which resulted in the high affinity of the nanomolar inhibitors. However, these inhibitors have greater potency for type A influenza virus than for type B influenza virus. To resolve the differences, we determined the X-ray crystal structure of three benzoic acid substituted inhibitors bound to the active site of B/Lee/40 neuraminidase. The investigation of a hydrophobic aliphatic group and a hydrophilic guanidino group on the aromatic inhibitors shows changes in the interaction with the active site residue Glu275. The results provide an explanation for the difference in efficacy of these inhibitors against types A and B viruses, even though the 11 active site residues of the neuraminidase are conserved.  相似文献   

16.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
A three-dimensional model of the Streptomyces coelicolor actinorhodin beta-ketoacyl synthase (Act KS) was constructed based on the X-ray crystal structure of the related Escherichia coli fatty acid synthase condensing enzyme beta-ketoacyl synthase II, revealing a similar catalytic active site organization in these two enzymes. The model was assessed by site-directed mutagenesis of five conserved amino acid residues in Act KS that are in close proximity to the Cys169 active site. Three substitutions completely abrogated polyketide biosynthesis, while two replacements resulted in significant reduction in polyketide production. (3)H-cerulenin labeling of the various Act KS mutant proteins demonstrated that none of the amino acid replacements affected the formation of the active site nucleophile.  相似文献   

18.
A kinetic comparison of the hydrolase and transferase activities of two bacterial phospholipase D (PLD) enzymes with little sequence homology provides insights into mechanistic differences and also the more general role of Ca(2+) in modulating PLD reactions. Although the two PLDs exhibit similar substrate specificity (phosphatidylcholine preferred), sensitivity to substrate aggregation or Ca(2+), and pH optima are quite distinct. Streptomyces sp. PMF PLD, a member of the PLD superfamily, generates both hydrolase and transferase products in parallel, consistent with a mechanism that proceeds through a covalent phosphatidylhistidyl intermediate where the rate-limiting step is formation of the covalent intermediate. For Streptomyces chromofuscus PLD, the two reactions exhibit different pH profiles, a result consistent with a mechanism likely to involve direct attack of water or an alcohol on the phosphorus. Ca(2+), not required for monomer or micelle hydrolysis, can activate both PLDs for hydrolysis of PC unilamellar vesicles. In the case of Streptomyces sp. PMF PLD, Ca(2+) relieves product inhibition by interactions with the phosphatidic acid (PA). A similar rate enhancement could occur with other HxKx(4)D-motif PLDs as well. For S. chromofuscus PLD, Ca(2+) is absolutely critical for binding of the enzyme to PC vesicles and for PA activation. That the Ca(2+)-PA activation involves a discreet site on the protein is suggested by the observation that the identity of the C-terminal residue in S. chromofuscus PLD can modulate the extent of product activation.  相似文献   

19.
Growth cones, the motile apparatus at the ends of elongating axons, are sites of extensive and dynamic membrane-cytoskeletal interaction and insertion of new membrane into the growing axon. One of the most abundant proteins in growth cone membranes is a protein designated GAP-43, whose synthesis increases dramatically in most neurons during periods of axon development or regeneration. We have begun to explore the role of GAP-43 in growth cone membrane functions by asking how the protein interacts with those membranes. Membrane-washing experiments indicate that mature GAP-43 is tightly bound to growth cone membranes, and partitioning of Triton X-114-solubilized GAP-43 between detergent-enriched and detergent-depleted phases indicates considerable hydrophobicity. The hydrophobic behavior of the protein is modulated by divalent cations, particularly zinc and calcium. In vivo labeling of GAP-43 in neonatal rat brain with [35S]methionine shows that GAP-43 is initially synthesized as a soluble protein that becomes attached to membranes posttranslationally. In tissue culture, both rat cerebral cortex cells and neuron-like PC12 cells actively incorporate [3H]palmitic acid into GAP-43. Isolated growth cones detached from their cell bodies also incorporate labeled fatty acid into GAP-43, suggesting active turnover of the fatty acid moieties on the mature protein. Hydrolysis of ester-like bonds with neutral hydroxylamine removes the bound fatty acid and exposes new thiol groups on GAP-43, suggesting that fatty acid is attached to the protein's only two cysteine residues, located in a short hydrophobic domain at the amino terminus. Modulation of the protein's hydrophobic behavior by divalent cations suggests that other domains, containing large numbers of negatively charged residues, might also contribute to GAP-43-membrane interactions. Our observations suggest a dynamic and reversible interaction of GAP-43 with growth cone membranes.  相似文献   

20.
A membrane-associated lipomannan in micrococci.   总被引:9,自引:0,他引:9       下载免费PDF全文
Membranes of Micrococcus lysodeikticus, Micrococcus flavus and Micrococcus sodonensis contain acidic lipomannans. Lipoteichoic acids could not be detected in these organisms, and the suggestion that they are substituted for by the lipomannans is strengthened by the chemical and physical resemblances between the two polymers. The mannans contain glycerol, ester-linked fatty acids and mono-esterified succinic acid residues, giving them both hydrophobic and charged properties. The M. lysodeikticus mannan has a chain of about 60 hexose units with two branch points, and is joined at its reducing end to the 1-position of a glycerol moiety bearing two fatty acid residues. Succinic acid on the mannan enables it to bind Mg2+ efficiently, and the polymer is firmly associated with the cytoplasmic membrane, probably by intercalation of its fatty acids with those of the membrane lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号