首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
2.
Carbon isotopic fractionation in heterotrophic microbial metabolism   总被引:2,自引:0,他引:2  
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

3.
Carbon isotopic fractionation in heterotrophic microbial metabolism.   总被引:10,自引:4,他引:6       下载免费PDF全文
Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4% depleted in 13C relative to the glucose used as the carbon source, whereas the acetate was 12.3% enriched in 13C. The acetate 13C enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6% depleted in 13C, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7%, respectively. Aspartic and glutamic acids were -1.6 and +2.7%, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.  相似文献   

4.
5.
6.
Carbon dioxide fixation in green sulphur bacteria   总被引:8,自引:0,他引:8  
1. About one-third of the CO(2) fixed during photosynthesis by washed suspensions of Chlorobium thiosulfatophilum strain 8346 gave rise to alpha-oxoglutarate and branched-chain oxo acids, mainly beta-methyl-alpha-oxovalerate. Another one-third to one-half gave rise to a polyglucose. 2. The fixation of CO(2) was inhibited by fluoroacetate, increasing concentrations up to 1mm stimulating the accumulation of alpha-oxoglutarate and causing a decrease in the formation of the branched-chain oxo acids and polyglucose. 3. Acetate was converted into the same products as was CO(2). 4. Fluoroacetate (1mm) had a negligible effect on the formation of polyglucose from acetate and caused a slight inhibition of the formation of the branched-chain oxo acids and increased accumulation of alpha-oxoglutarate. 5. Iodoacetate (1mm) strongly inhibited polyglucose formation from acetate and caused accumulation of pyruvate. The formation of the branched-chain oxo acids from acetate was only slightly affected by this inhibitor. 6. Pyruvate can be metabolized by this organism in the presence of a suitable electron donor whether CO(2) is present or not. In the absence of CO(2) pyruvate is converted into polyglucose. 7. The accumulation of oxo acids during CO(2) fixation is completely inhibited by NH(4) (+) ions. The formation of the branched-chain oxo acids is considerably decreased by the presence of isoleucine, leucine or valine, or a mixture of these. 8. CO(2) fixation in two other strains of Chlorobium appears to exhibit a similar pattern to that in C. thiosulfatophilum strain 8346. 9. It is concluded that in washed suspensions, CO(2) is fixed mainly by a mechanism involving the reductive carboxylic acid cycle. Acetate, the product of the cycle, is converted into polyglucose via pyruvate synthase and a reversal of glycolysis or into branched-chain oxo acids by an unknown mechanism.  相似文献   

7.
Bacterial metabolism has been studied intensively since the first observations of these 'animalcules' by Leeuwenhoek and their isolation in pure cultures by Pasteur. Metabolic studies have traditionally focused on a small number of model organisms, primarily the Gram negative bacillus Escherichia coli, adapted to artificial culture conditions in the laboratory. Comparatively little is known about the physiology and metabolism of wild microorganisms living in their natural habitats. For approximately 500-1000 species of commensals and symbionts, and a smaller number of pathogenic bacteria, that habitat is the human body. Emerging evidence suggests that the metabolism of bacteria grown in vivo differs profoundly from their metabolism in axenic cultures.  相似文献   

8.
Carbon dioxide metabolism in leaf epidermal tissue   总被引:10,自引:14,他引:10       下载免费PDF全文
A number of plant species were surveyed to obtain pure leaf epidermal tissue in quantity. Commelina communis L. and Tulipa gesnariana L. (tulip) were chosen for further work. Chlorophyll a/b ratios of epidermal tissues were 2.41 and 2.45 for C. communis and tulip, respectively. Phosphoenolpyruvate carboxylase, ribulose-1,5-diphosphate carboxylase, malic enzyme, and NAD+ and NADP+ malate dehydrogenases were assayed with epidermal tissue and leaf tissue minus epidermal tissue. In both species, there was less ribulose 1,5-diphosphate than phosphoenolpyruvate carboxylase activity in epidermal tissue whether expressed on a protein or chlorophyll basis whereas the reverse was true for leaf tissue minus epidermal tissue. In both species, malic enzyme activities were higher in epidermal tissue than in the remaining leaf tissue when expressed on a protein or chlorophyll basis. In both species, NAD+ and NADP+ malate dehydrogenase activities were higher in the epidermal tissue when expressed on a chlorophyll basis; however, on a protein basis, the converse was true. Microautoradiography of C. communis epidermis and histochemical tests for keto acids suggested that CO2 fixation occurred predominantly in the guard cells. The significance and possible location of the enzymes are discussed in relation to guard cell metabolism.  相似文献   

9.
10.
11.
12.
13.
Despite its toxicity for the majority of living matter on our planet, numerous microorganisms, both aerobic and anaerobic, can use carbon monoxide (CO) as a source of carbon and/or energy for growth. The capacity to employ carboxidotrophic energy metabolism anaerobically is found in phylogenetically diverse members of the Bacteria and the Archaea. The oxidation of CO is coupled to numerous respiratory processes, such as desulfurication, hydrogenogenesis, acetogenesis, and methanogenesis. Although as diverse as the organisms capable of it, any CO-dependent energy metabolism known depends on the presence of carbon monoxide dehydrogenase. This review summarizes recent insights into the CO-dependent physiology of anaerobic microorganisms with a focus on methanogenic archaea. Carboxidotrophic growth of Methanosarcina acetivorans, thought to strictly rely on the process of methanogenesis, also involves formation of methylated thiols, formate, and even acetogenesis, and, thus, exemplifies how the beneficial redox properties of CO can be exploited in unexpected ways by anaerobic microorganisms.  相似文献   

14.
15.
16.
Nitrite production by heterotrophic bacteria   总被引:1,自引:0,他引:1  
  相似文献   

17.
The study of the horizontal and vertical distribution of heterotrophic bacteria in brackish Lake Shira in summer periods showed that mesophilic bacteria dominated in all areas of the lake, whereas psychrotolerant bacteria dominated in the metalimnion and hypolimnion of its central part. Nonhalophilic bacteria were mostly mesophilic and dominated in coastal waters. Most psychrotolerant bacteria were able to grow in the presence of 5-10% NaCl. Heterotrophic bacteria isolated in different regions of the lake were identified to a generic level. The isolates were classified into autochthonous and allochthonous microorganisms on the bases of their distribution pattern in the lake water, halotolerance, and ability to grow at low temperatures.  相似文献   

18.
Abstract The distribution of heterotrophic bacteria in polluted coastal and unpolluted pelagic seawaters was studied using a 14C-MPN method with either five of seven kinds of 14C-organic compounds as substrates. The total number of heterotrophic bacteria in pelagic waters ranged from 9.2 × 103 to 5.4. ¢ 104 cell/ml and more than 85% of the heterotrophic bacteria were represented by obligate oligotrophs. In coastal waters, the number of heterotrophs was one order of magnitude higher (av. 3.5 ¢ 105 cells/ml), and eutrophic and facultatively oligotrophic bacteria were predominant. Oligotrophs in pelagic waters had a high specificity for the utilization of amino acids, especially glycine, and acetate-utilizing bacteria were scarce. The in situ maximum uptake rates of glutamate and glycine were much higher than those of glycolate and acetate. Acetate uptake rates were extremely low or not detectable in pelagic waters. The specificity of uptake kinetics is assumed to depend on the existence of obligate oligotrophs as dominant bacteria in pelagic seawater.  相似文献   

19.
Six rumen bacteria were cocultured with the rumen fungus Piromyces communis and the effects on xylanolysis determined. The rate and extent of xylan utilization was enhanced in cocultures with Prevotella ruminicola or Succinivibrio dextrinosolvens. The positive effects of Suc. dextrinosolvens and Prev. ruminicola on xylanolysis by P. communis correlated with effective cross-feeding by the bacteria on arabinose and xylose released from xylan. Xylanolysis was not enhanced in cocultures of P. communis with Streptococcus bovis, Veillonella parvula or Ruminococcus flavefaciens. A comparison of fermentation product profiles and of extracellular enzyme activities showed that whereas saccharolytic species and Butyrivibrio fibrisolvens were dominant in cocultures, P. communis dominated in the culture with R. flavefaciens. Extracellular xylanase and β-xylosidase activities were not increased by cocultivation of P. communis with any of the heterotrophic bacteria.  相似文献   

20.
Thiosulfate was oxidized stoichiometrically to tetrathionate during growth on glucose byKlebsiella aerogenes, Bacillus globigii, B. megaterium, Pseudomonas putida, two strains each ofP. fluorescens andP. aeruginosa, and anAeromonas sp. A gram-negative, rod-shaped soil isolate, Pseudomonad Hw, converted thiosulfate to tetrathionate during growth on acetate. None of the organisms could use thiosulfate as sole energy source. The quantitative recovery of all the thiosulfate supplied to heterotrophic cultures either as tetrathionate alone or as tetrathionate and unused thiosulfate demonstrated that no oxidation to sulfate occurred with any of the strains tested. Two strains ofEscherichia coli did not oxidize thiosulfate. Thiosulfate oxidation in batch culture occurred at different stages of the growth cycle for different organisms:P. putida oxidized thiosulfate during lag and early exponential phase,K. aerogenes oxidized thiosulfate at all stages of growth, andB. megaterium andAeromonas oxidized thiosulfate during late exponential phase. The relative rates of oxidation byP. putida andK. aerogenes were apparently determined by different concentrations of thiosulfate oxidizing enzyme. Thiosulfate oxidation byP. aeruginosa grown in chemostat culture was inducible, since organisms pregrown on thiosulfate-containing media oxidized thiosulfate, but those pregrown on glucose only could not oxidize thiosulfate. Steady state growth yield ofP. aeruginosa in glucose-limited chemostat culture increased about 23% in the presence of 5–22 mM thiosulfate, with complete or partial concomitant oxidation to tetrathionate. The reasons for this stimulation are unclear. The results suggest that heterotrophic oxidation of thiosulfate to tetrathionate is widespread across several genera and may even stimulate bacterial growth in some organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号