首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decreases in dissolved organic carbon (DOC) and dissolved oxygen (DO) with increasing depth below the groundwater table are often considered as evidence for aerobic respiration; however, they may reflect mixing of infiltrating water and groundwater. We found that groundwater DOC concentration was on average 0.3 mg C l?1 higher and DO concentration 1.5 mg O2 l?1 lower at recharge sites replenished with stormwater than at reference sites fed by direct infiltration of rain water from the land surface. Groundwater DOC increased and DO decreased with increasing vadose zone thickness (VZT) at both recharge and reference sites. There was no significant interaction between the effects of stormwater infiltration and VZT. Vertical changes in DOC and DO below the groundwater table at recharge sites could account for by simple mixing of infiltrating stormwater and groundwater. Moreover, aquifer sediment respiration (SR) was not significantly higher at recharge sites than at reference sites. However, slow filtration column experiments showed that SR increased significantly with an increasing supply of easily biodegradable DOC. We conclude that the observed reduction in DOC below the groundwater table at recharge sites was essentially due to water mixing rather than biological uptake because of the low biodegradability of the DOC and the short transit time of stormwater in the upper layers of groundwater. Our results highlight the need to distinguish between the effect of hydrological and biological processes on DOC and DO patterns below the groundwater before conclusions are made on the efficiency of groundwater in degrading surface-derived DOC.  相似文献   

2.
Dissolved organic carbon and its utilization in a riverine wetland ecosystem   总被引:11,自引:2,他引:9  
Variations in dissolved organic carbon (DOC) concentrations of surface waters and subsurface interstitial groundwater of riparian and wetland soils to 1.2 m depth were evaluated in a riverine wetland ecosystem over one year. DOC was monitored at seven sites within the wetland pond, two sites on the inflow stream, and one site on the outflow stream. Surface concentrations in the inflow stream ranged from 0.74 to 11.6 mg C L–1 and those of the outflow from 2.1 to 8.0 mg C L–1 Average DOC from stream floodplain hydrosoils (3.1 to 32.1 mg C L–1 was greater than DOC from the sediments below the stream channel (1.6 to 6.8 mg C L–1 Surface DOC within the wetland varied seasonally, with greatest fluctuations in concentrations through the summer and autumn (range 4.8 to 32.6 mg C L–1 ) during intensive macrophyte growth and bacterial production. DOC was less variable during the winter months (1.7 to 3.3 mg C L–1 Within the wetland pond, average DOC concentrations (7.1 to 48.2 mg C L–1) in the subsurface waters were significantly greater (p < 0.05) than average surface concentrations. The microbial availability of surface and subsurface DOC to bacteria was evaluated from losses of DOC by wetland bacteria grown on the DOC. Bacterial growth efficiencies ranged from 5 to 20% and were negatively correlated to the percentage of DOC removed by bacteria (r2=0.93). Throughout the ecosystem, DOC concentrations were greatest in the subsurface waters, but at most depths this DOC was a less suitable substrate than surface DOC for utilization by bacteria.  相似文献   

3.
Dissolved free amino acid (DFAA) concentration and composition and dissolved organic carbon (DOC) concentration were measured over 16 months at three depths in hypertrophic Hartbeespoort Dam, South Africa and in its two perenially inflowing rivers. The range of DFAA concentrations in the reservoir and both rivers were similar with dominant DFAA consisting of serine, glycine, alanine and ornithine in all three systems. The range of DOC concentrations in the rivers was 1.5–11.1 mg l–1, the major river (Crocodile) having about twice the DOC concentration of the Magalies River. The DFAA/DOC ratios ranged between 0.02–1.1% in the Crocodile River and 0.13–3.7% in the Magalies River. DFAA and DOC concentrations were positively correlated to the Magalies River flow, but for the Crocodile River, which received domestic and industrial effluents, DOC was inversely correlated to flow. The source of DFAA in both rivers was mainly terrestrial, in contrast to the main DOC source in the Crocodile River which was the effluents. The DFAA load of the Crocodile River ranged between 0.22 and 208 kg C d–1.DOC (5.0–24.8mg l–1) in Hartbeespoort Dam generally decreased with depth but DFAA (15–4800 nmol l–1) concentration showed no clear trend. The DFAA/DOC ratios varied between 0.02 and 2.9%. DFAA concentrations were correlated (r = 0.3, n = 30, p = 0.04) with bacterial numbers at 0 and 10 m only while no significant correlations were found with bacterial production, chlorophyll a concentration and phytoplankton primary and EDOC (extracellular DOC) production at any depth. The rate of bacterial utilization of DFAA was low compared with data from other lakes. Diurnal phytoplankton production of DFAA in the euphotic zone of the whole lake was calculated to vary between 268 and 30 780 t C d–1 indicating autochthonous DFAA sources were dominant to allochthonous DFAA sources. The autochthonous production of DFAA was > 2 × gross bacterial production of the euphotic zone indicating that although DFAA concentrations were frequently < 10 g C l–1, the rate of DFAA production exceeded bacterial requirements.  相似文献   

4.
A better understanding of nitrate removal mechanisms is important for managing the water quality function of stream riparian zones. We examined the linkages between hydrologic flow paths, patterns of electron donors and acceptors and the importance of denitrification as a nitrate removal mechanism in eight riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Nitrate-N concentrations in shallow groundwater from adjacent cropland declined from levels that were often 10–30 mg L–1 near the field-riparian edge to < 1 mg L–1 in the riparian zones throughout the year. Chloride data suggest that dilution cannot account for most of this nitrate decline. Despite contrasting hydrogeologic settings, these riparian zones displayed a well-organized pattern of electron donors and acceptors that resulted from the transport of oxic nitrate-rich groundwater to portions of the riparian zones where low DO concentrations and an increase in DOC concentrations were encountered. The natural abundances of d15N and in situ acetylene injection to piezometers indicate that denitrification is the primary mechanism of nitrate removal in all of the riparian zones. Our data indicate that effective nitrate removal by denitrification occurs in riparian zones with hydric soils as well as in non-hydric riparian zones and that a shallow water table is not always necessary for efficient nitrate removal by denitrification. The location of hot spots of denitrification within riparian areas can be explained by the influence of key landscape variables such as slope, sediment texture and depth of confining layers on hydrologic pathways that link supplies of electron donors and acceptors.  相似文献   

5.
Wetlands across the Canadian prairies are typically shallow (<1.0 m) and exhibit high dissolved organic carbon (DOC) concentrations (>10 mg l–1). Studies have shown that DOC in such shallow wetlands is not as reliable an indicator of ultraviolet radiation (UVR) attenuation as it is in clearwater. Changes in DOC character and composition as a result of sunlight exposure might provide a reasonable explanation for this observation. To test this, we investigated seasonal changes in DOC optical and chemical properties in a shallow prairie wetland over a 2-year period. Although DOC concentration increased at least two-fold from spring until fall, DOC specific absorption (at 350 nm) and fluorescence decreased by 30 and 32%, respectively, for the same period. In both years, seasonal decreases in DOC molecular weight and size (from measurements of tangential filtration and mass electrospray mass spectrometry) were reflected in concomitant increases in spectral slope. 13C NMR analysis of DOC isolated on XAD-8 resins revealed a 49% decrease in aromatic moieties when spring values were compared to those in the fall. As well, 13C signatures of this isolated DOC became heavier seasonally. In a short term photodegradation experiment (6 days) we noted a 47% decline in DOC specific absorption coefficients at 350 nm and a 15% increase in spectral slope when water exposed to the total light spectrum was compared to that of a dark control. Taken together, all of these observations were consistent with the occurrence of seasonal DOC photodegradation in shallow prairie wetlands and underlined the importance of this process in shaping DOC character and composition in these hydrologically dynamic systems. Our data also indicates that constant mixing and shallow depths in these wetlands were factors which enhanced DOC photodegradation. Although the high DOC concentrations of prairie wetlands should theoretically offer protection for their biota, seasonal photodegradation of DOC means that these systems may not be as protected as their high DOC concentrations suggest.  相似文献   

6.
Solute, nutrient and bacterial inputs to the River Rhône from the interstitial habitat of a gravel bar and the floodplain aquifer were investigated during an artificial drought. Eight springs were investigated: four groundwater-fed springs in the floodplain, located at the bottom of the bank; and four interstitial-fed springs located at the downstream end of a gravel bar. During this period, the inflows of groundwater to the river represented an average input of 0.77 mg l–1 of nitrogen (of which 93.3% were nitrates), 0.0187 mg l–1 of total phosphorus (of which 42.2% was orthophosphate), 3.56 mg l–1 of silica, 2.315 ± 0.703 mg l–1 of dissolved organic carbon (DOC, of which 47% was biodegradable) and 7.3 × 104 ± 3.7 × 104 bacteria per ml (of which 8.8% were active). Silica, DOC, biodegradable DOC, and bacteria concentrations displayed temporal variations during the study, which seem to be linked to the biological activity of the groundwater biofilm. There was a strong heterogeneity between the two types of groundwater that flow to the river: concentrations of calcium and alkalinity were higher in bank springs than in gravel bars springs. In these latters, sulfate, sodium, nitrogen, phosphorus were significantly higher.  相似文献   

7.
Sources and sinks of dissolved organic carbon in a forested swamp catchment   总被引:14,自引:6,他引:8  
Concentrations of dissolved organic carbon (DOC) were measured in precipitation, throughfall, stemflow, and soil, peat and stream water in a 50 ha catchment with a central 5 ha swamp at Mont St. Hilaire, Quebec. DOC concentrations in precipitation were low (2.0 mg L–1), but increased in passage through the tree canopies as throughfall (9.1–14.6 mg L–1) and stemflow (23.1–30.1 mg L–1). For the period July 1–November 15, 1987, 0.5 g DOC m–2 was imported as precipitation, and forest canopies contributed a further 1.4–1.7 g m–2 2 to the soil surface. DOC concentrations were higher (46.0 and 67.6 mg L–1) in upland soil organic horizons, but decreased with depth because subsoil mineral horizons acted as a major sink of DOC. A laboratory experiment using leaf leachate revealed that subsoil horizons were able to adsorb DOC, with equilibrium DOC concentrations ranging from 3 to 19 mg L–1. Soil organic carbon appeared to be an important determinant of equilibrium DOC concentrations. The swamp was a major source of DOC, with an overall average DOC concentration of 58.6 mg L–1 and showed strong spatial and temporal variations related to hydrologic and thermal regimes. During base flow periods, stream DOC concentrations were small (< 3 mg L–1), dominated by water fed from springs draining upland soils. During high flows, stream DOC concentrations increased through the contribution of DOC-rich water originating in the swamp. Sources, sinks and transport of DOC are thus a function of a complex set of inter-related biotic and abiotic process.  相似文献   

8.
Seasonal variability of dissolved organic carbon ina Mediterranean stream   总被引:1,自引:0,他引:1  
The seasonal variability of dissolved organic carbon(DOC) flux in a Mediterranean stream subjected todischarges of wide range of intensities and variabledry period was studied as a function of the hydrologicconditions, and the relationship between surface andsubsurface (hyporheic and groundwater) DOCconcentration. DOC concentration in stream water(2.6 mg l–1 ±1.5 SD) was higher thangroundwater (1.3 mg l–1 ± 1.2 SD) and lower thanhyporheic water (3.8 mg l–1 ±1.7 SD),suggesting that, at baseflow, stream DOC concentrationincreases when groundwater discharges through thehyporheic zone. Storms contributed to 39% of annualwater export and to 52% of the total annual DOCexport (220 kg km–2). A positive relationship wasobserved between Discharge (Q) and stream DOCconcentration. Discharge explained only 40% of theannual variance in stream DOC, but explained up to93% of the variance within floods. The rate of streamDOC changes with discharge change during storms (dDOC/dQ), ranged between 0 and 0.0045 C mgl–1 s l–1, with minimum values during Springand Summer, and maxima values in Fall and Winter.These dynamics suggest that storm inputs ofterrigenous DOC vary between seasons. During floods inthe dormant season, DOC recession curves were alwayssteeper than discharge decline, suggesting shortflushing of DOC from the leaching of fresh detritusstored in the riparian zone.  相似文献   

9.
1. Riparian zones function as important ecotones that reduce nitrate concentration in groundwater and inputs into streams. In the boreal forest of interior Alaska, permafrost confines subsurface flow through the riparian zone to shallow organic horizons, where plant uptake of nitrate and denitrification are typically high. 2. In this study, riparian zone nitrogen retention was examined in a high permafrost catchment (approximately 53% of land area underlain by permafrost) and a low permafrost catchment (approximately 3%). To estimate the contribution of the riparian zone to catchment nitrogen retention, we analysed groundwater chemistry using an end‐member mixing model. 3. Stream nitrate concentration was over twofold greater in the low permafrost catchment than the high permafrost catchment. Riparian groundwater was not significantly different between catchments, averaging 13 μm overall. Nitrogen retention, measured using the end‐member mixing model, averaged 0.75 and 0.22 mmol N m?2 day?1 in low and high permafrost catchments, respectively, over the summer. The retention rate of nitrogen in the riparian zone was 10–15% of the export in stream flow. 4. Our results indicate that the riparian zone functions as an important sink for groundwater nitrate and dissolved organic carbon (DOC). However, differences in stream nitrate and DOC concentrations between catchments cannot be explained by solute inputs from riparian groundwater to the stream and differences between streams are probably attributable to deeper groundwater inputs or flows from springs that bypass the riparian zone.  相似文献   

10.
Hessen  Dag O.  Færøvig  Per J. 《Plant Ecology》2001,154(1-2):261-273
Cell numbers and fluorescence of the green algae Selenastrum capricornutuum and survival of Daphnia magna exposed to simulated sun-light was assessed along a gradient of DOC (0, 1, 5 10 and 50 mg C l–1). When exposed to UV-doses and spectral distribution (295–750 nm) closely resembling surface solar radiation during mid summer, Selenastrum showed major losses of cell fluorescence. In the absence of DOC, fluorescence was severely depressed, with successively decreasing effects with increased DOC. Surviving cells also required an extensive recovery period (10–12 d) for regrowth after exposure, while an almost immediate recovery was observed at concentrations above 1 mg DOC l–1. For Daphnia, survival was reduced to less than 10% after 4 h exposure, and almost zero after 8 h exposure in the absence of humus DOC, while no effects were observed in treatments with 10 and 50 mg C l–1. Selenastrum and Daphnia that were not directly irradiated, but exposed to UV-irradiated water with the same concentrations of DOC did not reveal negative effects. This indicates negligible indirect effects mediated by long-lived free radicals or other toxic compounds. Irradiation of Daphnia under increased oxygen concentration (200% saturation) did not indicate acute effects, suggesting that effects of ambient radicals and oxidants would be of minor importance relative to intracellular photoproducts.  相似文献   

11.
Monitoring data over the period 1994–2007 were analysed for three streams (Cottage Hill Sike, CHS; Rough Sike, RS; Trout Beck, TB) draining blanket peat underlain by glacial clay and limestone-rich sub-strata at Moor House (Northern England). Dissolved organic carbon concentration, [DOC], showed complex relationships with both discharge and calcium concentration, [Ca]. A model based on [Ca] was constructed to simulate stream [DOC] by mixing dissolved organic matter (DOM) from shallow peat, quantified by measured [DOC] (15–30 mg l?1) in peat porewater, with DOM assumed to be present at a constant concentration (c. 5 mg l?1) in groundwater. A temperature-based adjustment to the measured porewater [DOC] was required to account for relatively low streamwater [DOC] during winter and spring. The fitted model reproduced short-term variation in streamwater [DOC] satisfactorily, in particular variability in RS and TB due to groundwater contributions. Streamwater DOM is largely derived from surface peat, which accounts for more than 96% of the total DOC flux in both RS and TB, and 100% in CHS. Model outputs were combined with streamwater and porewater DO14C data to estimate the 14C contents, and thereby the ages, of DOM from peat and groundwater. The peat-derived DOM is 5 years old on average, with most of it very recently formed. The derived age of groundwater DOM (8,500 years) is comparable to the 4,000–7,000 years estimated from the DO14C of water extracts of clay underlying the peat, suggesting that the clay is the source of groundwater DOM.  相似文献   

12.
The sources of groundwater and the patterns in groundwater dissolved N and DOC concentration in the floodplain of a subtropical stream (Wollombi Brook, New South Wales) were studied over a 2-year period using three piezometer transects. While the stream was generally a discharge area for regional groundwater, this source represented only a small contribution to either the water or N budget of the alluvial aquifer. Groundwater–surface water interactions appeared mostly driven by cycles of bank recharge and discharge between the stream and the alluvial aquifer. DON and NH4+ were the principal forms of dissolved N in groundwater, consistent with the primarily suboxic to anoxic conditions in the alluvial aquifer. A plume of groundwater NO3 was found at one transect where oxic conditions persisted within the riparian zone. The origin of the NO3 plume was hypothesized to be soil NO3 from the riparian zone flushed to the water table during recharge events. When present, NO3 did not reach surface water because conditions in the alluvial aquifer in the vicinity of the stream were always reduced. The concentration of groundwater DOC was variable across the floodplain and may be related to the extent of the vegetation cover. Overall, transformation and recycling of N during lateral exchange processes, as opposed to discharge of new N inputs from regional groundwater, appears to primarily control N cycling during groundwater–surface water interactions in this subtropical floodplain.  相似文献   

13.
Organic and inorganic carbon (C) fluxes transported by water were evaluated for dominant hydrologic flowpaths on two adjacent headwater catchments in the Brazilian Amazon with distinct soils and hydrologic responses from September 2003 through April 2005. The Ultisol-dominated catchment produced 30% greater volume of storm-related quickflow (overland flow and shallow subsurface flow) compared to the Oxisol-dominated catchment. Quickflow fluxes were equivalent to 3.2 ± 0.2% of event precipitation for the Ultisol catchment, compared to 2.5 ± 0.3% for the Oxisol-dominated watershed (mean response ±1 SE, n = 27 storms for each watershed). Hydrologic responses were also faster on the Ultisol watershed, with time to peak flow occurring 10 min earlier on average as compared to the runoff response on the Oxisol watershed. These different hydrologic responses are attributed primarily to large differences in saturated hydraulic conductivity (K s). Overland flow was found to be an important feature on both watersheds. This was evidenced by the response rates of overland flow detectors (OFDs) during the rainy season, with overland flow intercepted by 54 ± 0.5% and 65 ± 0.5% of OFDs for the Oxisol and Ultisol watersheds respectively during biweekly periods. Small volumes of quickflow correspond to large fluxes of dissolved organic C (DOC); DOC concentrations of the hydrologic flowpaths that comprise quickflow are an order of magnitude higher than groundwater flowpaths fueling base flow (19.6 ± 1.7 mg l−1 DOC for overland flow and 8.8 ± 0.7 mg l−1 DOC for shallow subsurface flow versus 0.50 ± 0.04,mg l−1 DOC in emergent groundwater). Concentrations of dissolved inorganic C (DIC, as dissolved CO2–C plus HCO3–C) in groundwater were found to be an order of magnitude greater than quickflow DIC concentrations (21.5 mg l−1 DIC in emergent groundwater versus 1.1 mg l−1 DIC in overland flow). The importance of deeper flowpaths in the transport of inorganic C to streams is indicated by the 40:1 ratio of DIC:DOC for emergent groundwater. Dissolved CO2–C represented 92% of DIC in emergent groundwater. Results from this study illustrate a highly dynamic and tightly coupled linkage between the C cycle and the hydrologic cycle for both Ultisol and Oxisol landscapes: organic C fluxes strongly tied to flowpaths associated with quickflow, and inorganic C (particularly dissolved CO2) transported via deeper flowpaths.  相似文献   

14.
Plants, by influencing water fluxes across the ecosystem–vadose zone–aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed ∼150 years ago lowered the water table (from −2 to −5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to −0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m−2 down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed ∼380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation–groundwater links is needed to anticipate and manage them.  相似文献   

15.
Paramasivam  S.  Alva  A. K.  Prakash  O.  Cui  S. L. 《Plant and Soil》1999,208(2):307-319
A portion of nitrate (NO 3 ), a final breakdown product of nitrogen (N) fertilizers, applied to soils and/or that produced upon decomposition of organic residues in soils may leach into groundwater. Nitrate levels in water excess of 10 mg L−1 (NO3–N) are undesirable as per drinking water quality standards. Nitrate concentrations in surficial groundwater can vary substantially within an area of citrus grove which receives uniform N rate and irrigation management practice. Therefore, differences in localized conditions which can contribute to variations in gaseous loss of NO 3 in the vadose zone and in the surficial aquifer can affect differential concentrations of NO3–N in the groundwater at different points of sampling. The denitrification capacity and potential in a shallow vadose zone soil and in surficial groundwater were studied in two large blocks of a citrus grove of ‘Valencia’ orange trees (Citrus sinensis (L.) Obs.) on Rough lemon rootstock ( Citrus jambhiri (L.)) under a uniform N rate and irrigation program. The NO3–N concentration in the surficial groundwater sampled from four monitoring wells (MW) within each block varied from 5.5- to 6.6-fold. Soil samples were collected from 0 to 30, 30 to 90, or 90 to 150 cm depths, and from the soil/groundwater interface (SGWI). Groundwater samples from the monitoring wells (MW) were collected prior to purging (stagnant water) and after purging five well volumes. Without the addition of either C or N, the denitrification capacity ranged from 0.5 to 1.53, and from 0.0 to 2.25 mg N2O–N kg−1 soil at the surface soil and at the soil/groundwater interface, respectively. The denitrification potential increased by 100-fold with the addition of 200 mg kg−1 each of N and C. The denitrification potential in the groundwater also followed a pattern similar to that for the soil samples. Denitrification potential in the soil or in the groundwater was greatest near the monitor well with shallow depth of vadose zone (MW3). Cumulative N2O–N emission (denitrification capacity) from the SGWI soil samples and from stagnant water samples strongly correlated to microbial most probable number (MPN) counts (r2 = 0.84 – 0.89), and dissolved organic C (DOC) (r2 = 0.96 – 0.97). Denitrification capacity of the SGWI samples moderately correlated to water-filled pore space (WFPS) (r2 = 0.52). However, extractable NO3-N content of the SGWI soil samples poorly (negative) correlated to denitrification capacity (r2 = 0.35). However, addition C, N or both to the soil or water samples resulted in significant increase in cumulative N2O emission. This study demonstrated that variation in denitrification capacity, as a result of differences in denitrifier population, and the amount of readily available carbon source significantly (at 95% probability level) influenced the variation in NO3–N concentrations in the surficial groundwater samples collected from different monitoring wells within an area with uniform N management. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
A series of experiments were conducted to address the fate of dissolved organic carbon (DOC) in the peat–stream interface zone linking a minerotrophic poor fen and an ombrotrophic mire with surrounding stream water in the drainage area of Lake Örträsket in northern Sweden. Transport and mineralisation of DOC were quantified in peat–stream interface cores in response to variations in pore water velocity, DOC concentration and the molecular size and source of DOC. Mineralisation and CH4 production were positively correlated with pore water velocity at rates between 0.08 and 0.20cmh–1 and negatively correlated at rates between 0.20 and 0.40cmh–1. The DOC concentration of the effluent from the peat cores was independent of the pore water velocity but proportional to the DOC concentration of the source water. Higher concentrations of DOC were exported from than imported to the peat cores, and the cores exported DOC molecules of smaller average molecular size than received. Carbon mineralisation in the peat, assessed in a static system, was independent of the concentration of DOC. DOC with a nominal cutoff at 100Da was mineralised faster by streamwater bacteria than DOC dialysed with a cutoff at 3500Da, and their mineralisation rate was positively correlated with the DOC concentration. Streamwater bacteria mineralised streamwater DOC at a lower rate than the peat–stream interface zone pore water DOC. The pattern of velocity dependence of mineralisation was the same for both sources of peat DOC but the mineralisation rates, average molecular size, and bioavailability of DOC were different, emphasising the importance of the compositional heterogeneity of the peat–stream interface zone for the DOC budget of streamwater.  相似文献   

17.
Individuals of the fairy shrimp, Branchinecta longiantenna, were subjected to 5 concentrations (0.1 to 15 mg l–1) of Pb in diluted habitat water at 13 °C. Lead concentrations (mg kg–1 wet weight) in the animals were determined at 2-day intervals by digestion in nitric acid followed by atomic absorption analysis. The shrimp were also subjected to 0.1 mg l–1 media of Cd and Zn, separately.Uptake rates by the fairy shrimp for the three metal ions at 0.1 mg l–1 were: 0.111, 0.0885, and 0.0460 mg kg–1 day–1 for Zn, Pb, and Cd, respectively. After 2 days in 1.0 mg l–1 Cd or Zn, the animals expired; but they surviced for 8 days in a 10 mg l–1 Pb medium and for 2 days in 25 mg l–1 Pb. Lead uptake demonstrated a linear dependence on the Pb concentration in the media.Shrimp survived at much higher tissue accumulations of Pb compared to Zn and Cd. Estimated lethal doses were 20, 1.2–2.4, and 0.4–1.4 mg kg–1 wet weight for Pb, Zn, and Cd, respectively. Pb was found to be at much lower concentration than Cd or Zn in the natural pond water but between Cd and Zn levels in the sediment. Thus Cd and Zn probably present a greater threat to B. longiantenna than Pb, although Pb may be in higher concentration in the environment.Contribution 47, Laboratory of Ecology, The Claremont Colleges, Claremont, CA 91711, USA. Send reprint requests to Clyde Eriksen.  相似文献   

18.
Oxygen supply and the adaptations of animals in groundwater   总被引:7,自引:2,他引:5  
1. The first part of this review focuses on the oxygen status of natural groundwater systems (mainly porous aquifers) and hyporheic zones of streams. The second part examines the sensitivity of groundwater organisms, especially crustaceans, to low oxygen concentrations (< 3.0 mg L?1 O2). 2. Dissolved oxygen (DO) in groundwater is spatially heterogeneous at macro- (km), meso- (m) and micro- (cm) scales. This heterogeneity, an essential feature of the groundwater environment, reflects changes in sediment composition and structure, groundwater flow velocity, organic matter content, and the abundance and activity of micro-organisms. Dissolved oxygen also exhibits strong temporal changes in the hyporheic zone of streams as well as in the recharge area of aquifers, but these fluctuations should be strongly attenuated with increasing distance from the stream and the recharge zone. 3. Dissolved oxygen gradients along flow paths in groundwater systems and hyporheic zones vary over several orders of magnitude (e.g. declines of 9 × 10?5 to 1.5 ×10?2 mg L?1 O2 m?1 in confined aquifers and 2 × 10?2 to 1 mg L?1 O2 m?1 in parafluvial water). Several factors explain this strong variation. Where the water table is close to the surface, oxygen is likely to be consumed rapidly in the first few metres below the water table because of incomplete degradation of soil-generated labile dissolved organic carbon (DOC) in the vadose zone. Where the water table is far from the surface, strong oxygen depletion in the vicinity of the water table does not occur, DO being then gradually consumed as groundwater flows down the hydraulic gradient. In unconfined groundwater systems, oxygen consumption along flow paths may be compensated by down-gradient replenishment of DO, resulting either from the ingress of atmospheric oxygen or water recharge through the vadose zone. In confined groundwater systems, where replenishment of oxygen is impossible, the removal time of DO varies from a few years to more than 10 000 years, depending mainly on the organic carbon content of the sediment. Comparison of the hyporheic zones between systems also revealed strong differences in the removal time and length of underground pathways for DO. This strong variability among systems seems related to differences in contact time of water with sediment. 4. Although groundwater macro-crustaceans are much more resistant to hypoxia than epigean species, they cannot survive severe hypoxia (DO < 0.01 mg L?1 O2) for very long (lethal time for 50% of the population ranged from 46.7 to 61.7 h). In severe hypoxia, none of the hypogean crustaceans examined utilized a high-ATP yielding metabolic pathway. High survival times are mainly a result of the combination of three mechanisms: a high storage of fermentable fuels (glycogen and phosphagen), a low metabolic rate in normoxia, and a further reduction in metabolic rate by reducing locomotion and ventilation. It is suggested here that the low metabolic rate of many hypogean species may be an adaptation to low oxygen and not necessarily result from an impoverished food supply. 5. An interesting physiological feature of hypogean crustaceans is their ability to recover from anaerobic stress and, more specifically, rapidly to resynthesize glycogen stores during post-hypoxic recovery. A high storage and rapid restoration of fermentable fuels (without feeding) allows groundwater crustaceans to exploit a moving mosaic of suboxic (< 0.3 mg L?1 O2), dysoxic (0.3–3.0 mg L?1 O2) and oxic (> 3 mg L?1 O2) patches. 6. It is concluded that although hypogean animals are probably unsuited for life in extensively or permanently suboxic groundwater, they can be found in small or temporarily suboxic patches. Indeed, their adaptations to hypoxia are clearly suited for life in groundwater characterized by spatially heterogeneous or highly dynamic DO concentrations. Their capacity to survive severe hypoxia for a few days and to recover rapidly would explain partly why ecological field studies often reveal the occurrence of interstitial taxa in groundwater with a wide range of DO.  相似文献   

19.
Dissolved organic carbon in streams and groundwater   总被引:3,自引:3,他引:0  
Minipiezometers installed at different vertical levels within the streambed (20–140 cm) were used to study temporal and spatial variation in the dissolved organic carbon (DOC) content of streamwater and groundwater in three southern Ontario streams. Groundwater, as represented by our streambed samples, contained considerable quantities of DOC but variation between replicate samples was high. Diel fluctuations in DOC content of streamwater were consistent with daytime autochthonous production and night-time uptake by heterotrophs. Water from the streambed neither consistently diluted nor enhanced streamwater levels of DOC. At some stations, DOC variation with depth, including streamwater, seemed to be largely random. At other stations, DOC concentrations from the deepest piezometers were consistently higher than concentrations at intermediate depths, suggesting a loss of DOC from deeper waters to overlying sediments. However, at these stations DOC concentrations were highest at 20 cm and at the surface. Interflow delivery of DOC to the shallow layers of the streambed may be a significant source of carbon for a stream ecosystem, especially in agricultural areas. Late summer diel fluctuations at one station may be related to changing patterns of intermixing of stream and groundwater in the upper layers of the streambed as governed by velocity heads, convective currents and evapotranspiration.  相似文献   

20.
The effect of exposure to different concentrations of food and suspended silt on filtration, respiration and condition were studied in the freshwater mussel Hyridella menziesi. Using a milk solids-based food and kaolin to simulate silt, mussels were maintained at different combinations of food and silt concentrations for 3 weeks. Between treatments mean filtration rates ranged from 0.97–1.66 l g–1 h–1, and respiration from 0.50–1.35 mg O2 g–1 h–1. Silt (non-volatile suspended solids up to 35 mg l–1) failed to have a significant effect on filtration rate or condition, but with increasing food levels (volatile suspended solids up to 35 mg l–1) filtration rate was reduced, and condition was reduced at the lowest food concentration (<5 mg l–1). Respiration showed a food × silt interaction between treatment blocks. When food was low respiration increased with increasing silt concentrations, and when silt was low (<5 mg l–1) respiration increased with increasing food concentrations. The observed effects of food and silt on filtration, respiration and condition are discussed in terms of their potential for affecting contaminant bioaccumulation. In low-food situations (i.e., <5 mg l–1), if mussels are pumping large volumes of water, contaminant uptake rates could be enhanced, whereas abundant food would result in lower pumping rates and lower uptake rates. Changes in metabolism with food concentration have implications for contaminant elimination, and changes in biochemical composition associated with changing condition could affect the tissue distribution and retention of contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号