首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Steroid transport in Pseudomonas testosteroni membrane vesicles was significantly inhibited by the uncoupled 2,4-dinitrophenol (DNP). Inhibition of steroid transport was not due to inhibition of the 3 beta- and 17 beta-hydroxysteroid dehydrogenase by concentrations of up to 1 mM DNP. However, inhibition of this membrane-bound enzyme was measured at 10 mM DNP. The solubilized 3 beta- and 17 beta-hydroxysteroid dehydrogenase was more sensitive, being inhibited at both 1 and 10 mM DNP indicating a specific inhibition of this enzyme by DNP. Testosterone-dependent oxygen consumption was stimulated slightly at low concentrations of DNP and inhibited at high concentrations. The inhibition of testosterone-dependent oxygen consumption correlated with the inhibition of transport. This indicated that the inhibition of transport by DNP was due to a direct inhibition of metabolism. The existence of an electrochemical gradient is used to explain these results.  相似文献   

2.
The uncoupler carbonyl cyanide chlorophenylhydrazone (CCCP) was an effective inhibitor of steroid transport in membrane vesicles of Pseudomonas testosteroni between 10 microM and 1 microM CCCP. At these concentrations the inhibition of steroid transport was not due to an inhibition of the 3 beta and 17 beta-hydroxysteroid dehydrogenase enzyme. CCCP also affected testosterone-dependent oxygen consumption at concentrations up to 100 microM and inhibited respiration at 0.5 and 1 microM. The effect of CCCP on testosterone-dependent oxygen consumption indicated that CCCP was acting as an uncoupler. The concurrent inhibition of testosterone transport and stimulation of testosterone-dependent oxygen consumption at 10-100 microM CCCP supported the conclusion that transport and metabolism were tightly coupled processes. When membrane vesicles were pre-incubated with CCCP for 15 min, CCCP did inhibit transport and the 3 beta and 17 beta-hydroxysteroid dehydrogenase activity. However, both transport and enzyme inhibition could be prevented by the addition of NAD+ to the incubation mixture. This indicated that CCCP exhibits the properties of a sulfhydryl reagent under pre-incubated conditions.  相似文献   

3.
Oxygen consumption was measured in membrane vesicles of Pseudomonas testosteroni using conditions similar to those identified for testosterone transport in these vesicles. Testosterone and NAD+, which are primary requirements for testosterone transport, were both required for maximum oxygen consumption suggesting that testosterone transport and oxygen consumption were linked. Testosterone-dependent oxygen consumption was inhibited by 95% by 1 mM KCN indicating that the electron-transport chain could be involved in this process. Respiration appears to play an important role in the transport of steroids by membrane vesicles of P. testosteroni.  相似文献   

4.
5.
Membrane vesicles were prepared from Micrococcus denitrificans by osmotic shock of lysozyme spheroplasts. These vesicles concentrated 4 amino acids via two systems; one for glycine-alanine and the other for asparagine-glutamine. Amino acid transport was coupled to the membrane-bound electron transport system and involved interactions of the primary dehydrogenases, cytochromes, cytochrome oxidase and oxygen. After transport the amino acids were recovered unchanged from the vesicles. The substrates of the membrane-bound electron transport system d-lactate, l-lactate, formate, succinate, NADH, glucose-6-phosphate and α-glycerolphosphate all stimulated transport at least 2-fold. Both oxygen and nitrate could serve as terminal electron acceptors with vesicles prepared from cells grown anaerobically with nitrate. Anaerobic transport in the presence of nitrate was not inhibited by cyanide but was inhibited by nitrite. A system stimulated by substrates of the electron transport system but independent of added terminal electron acceptors was found also in the vesicles prepared from anaerobically grown cells. Addition of one combination of two substrates for electron transport produced an amino acid uptake 12 to 15% greater than the sum of the rates for each substrate added singly. Additions of other combinations gave rates of transport less than the sum of the rates of each added alone. Both the dehydrogenase activities and the coupling of electron transport to amino acid uptake were modified by changing the growth conditions and differences between the effectiveness of each substrate for each of the two transport systems could be detected. The efficiency of the vesicles per protoheme, the prosthetic group of the membrane-bound cytochrome b, with d-lactate as substrate was 27% for glutamine and 6% for glycine of the rates of transport of these two amino acids in intact cells when driven by endogenous respiration. Assuming one amino acid transported per electron, the transport of glycine utilized 1% of the respiratory capacity with glucose-6-phosphate as substrate. The coupling to the electron transport with the other substrates was less efficient. It appeared that a small portion of the total capacity of the electron transport system was coupled to amino acid transport and the coupling to respiration, as well as the primary dehydrogenase activities and terminal cytochrome oxidase, were modified in response to the conditions of growth.  相似文献   

6.
7.
The metabolism of protocatechuate by Pseudomonas testosteroni   总被引:5,自引:5,他引:0  
1. Protocatechuate 4,5-oxygenase, purified 21-fold from extracts of Pseudomonas testosteroni, was examined in the ultracentrifuge and assigned a mol.wt. of about 140000. 2. When diluted, the enzyme rapidly lost activity during catalysis. Inactivation was partially prevented by l-cysteine. 3. With a saturating concentration of protocatechuate (1·36mm), Km for oxygen was 0·303mm. This value is greater than the concentration of oxygen in water saturated with air at 20°. 4. Cell extracts converted protocatechuate into γ-carboxy-γ-hydroxy-α-oxovalerate, which was isolated as its lactone. 5. γ-Carboxy-γ-hydroxy-α-oxovalerate pyruvate-lyase activity was stimulated by Mg2+ ions and mercaptoethanol. Cells grown with p-hydroxybenzoate as carbon source contained higher concentrations of this enzyme than those grown with succinate.  相似文献   

8.
Membrane vesicles were prepared by osmotic lysis of spheroplasts of Pseudomonas aeruginosa strain P14, and the active transport of amino acids was studied. D-Glucose, gluconate, and L-malate supported active transport of various L-amino acids. The respiration-dependent leucine transport was markedly stimulated by Na+. Moreover, without any respiratory substrate, leucine was also transported transiently by the addition of Na+ alone. This transient uptake of leucine was not inhibited either by carbonyl cyanide p-trifluoromethyoxyphenylhydrazone or by valinomycin, but was completely abolished by gramicidin D. Increase in the concentration of Na+ of the medium resulted in a decrease of the Km for L-leucine transport, whereas the Vmax was not significnatly affected. Active transport of leucine was inhibited competitively by isoleucine or by valine, whose transport was also stimulated by Na+. On the other hand, Na+ was not required for the uptake of other L-amino acids tested, but rather was inhibitory for some of them. These results show (i) that a common transport system for branched-chain amino acids exists in membrane vesicles, (ii) that the system requires Na+ for its activity, and (iii) that an Na+ gradient can drive the system.  相似文献   

9.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7 · 10?4 M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ > Rb+ > Cs+ > Na+ > Li+ and is inhibited by ATPase inhibitors such as N,N′-dicylclohexylcarbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphorylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K? gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive skin with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

10.
Sugar uptake by intestinal basolateral membrane vesicles   总被引:6,自引:0,他引:6  
A high yield of membrane vesicles was prepared from the basolateral surface of rat intestinal cells using an N2 cavitation bomb and density gradient centrifugation. The membranes were enriched 10-fold and were free of significatn contamination by brush border membranes and mitochondria. The rate of D-E114C]glucose and L-E13H]glucose uptake into the vesicle was measured using a rapid filtration technique. D-Glucose equilibrated within the vesicles with a half-time 1/25th that for L-glucose. The stereospecific uptake exhibited saturation kinetics with a Km of approx. 44 mM and a V of approx. 110 nmol . mg-1 min-1 at 10 degrees C. The activation energy for the process was 14 kcal . mol-1 below 15 degrees C and it approached 3 kcal . mol-1 above 22 degrees C. Carrier-mediated uptake was eliminated in the presence of 1 mM HgCl2 and 0.5 mM phloretin. The rate of transport was unaffected by the absence or presence of sodium concentration gradients. Competition studies demonstrated that all sugars with the D-glucose pyranose ring chair conformation shared the transport system, and that, with the possible exception of the -OH group at carbon No. 1, there were no specific requirements for an equatorial -OH group at any position in the pyranose ring. In the case of alpha-methyl-D-glucoside its inability to share the D-glucose transport system may be due to steric hindrance posed by the -OCH3 group rather than by a specific requirement for a free hydroxyl group at the position in the ring. It is concluded that sugars are transported across the basolateral membrane of the intestinal epithelium by a facilitated diffusion system reminiscent of that in human red blood cells.  相似文献   

11.
The Placental plasma membrane vesicles are capable of accumulating up to 190 mM Ca2+. This is 24-fold higher than the external Ca2+ concentration.This process is dependent on ATP hydrolysis by the placental Ca2+-ATPase.The PiCa ratio is dependent on the external Ca2+ concentration, and reaches the value of 2 at 10 mM Ca2+.Phosphate (5 mM) can double Ca2+ uptake when measured in the presence of 5 mM Ca2+.Mg2+; increased Ca2+ uptake only at low Ca2+ concentrations, and had no significant effect at 5 mM Ca2+.  相似文献   

12.
The hydrophobic reagents DCCD and EEDQ, each of which reacts with protein carboxyl groups, were found to inhibit both passive Ca2+ uptake by plasma membrane vesicles isolated from rat liver and agonist-induced Ca2+ uptake by hepatocytes. The data raise the possibility that the Ca2+ inflow pathway(s) in liver has a specific requirement for a reactive carboxyl group or groups.  相似文献   

13.
Plasmalemma-enriched vesicles were isolated from cotton roots (Gossypium hirsutum L. cv Acala San Jose 2) and from germinating radish seeds (Raphanus sativa L. cv Tondo Rosso Quarantino). When 100 millimolar ascorbate was added to the grinding medium, the addition of ferricyanide to either preparation led to an inside positive membrane potential as measured by the accumulation of thiocyanate. It is suggested that electrons from ascorbate were being transported electrogenically across the membrane to ferricyanide, resulting in an accumulation of protons within the vesicle. The redox activity of the vesicles has some similarities to that occurring in intact cells, thus providing a simpler system to study the components and effects of transmembrane electron transport.  相似文献   

14.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

15.
The use of membrane vesicles in transport studies   总被引:3,自引:0,他引:3  
Transport-competent plasma membrane vesicles isolated from mammalian cells provide a system to investigate mechanisms and regulation of nutrient and ion transport systems. The characteristics of membrane vesicle systems to study transport in erythrocytes, renal and epithelial membranes, Ehrlich ascites cells, and mouse fibroblasts are discussed. Studies of Na+-stimulated and Na+-independent amino acid and glucose transport in these systems are evaluated, with emphasis on experimental verification of concepts stated in the Na+ gradient hypothesis. Nucleoside, phosphate, and calcium transport systems in plasma membrane vesicles from mouse fibroblast cultures are discussed. Also, current biochemical approaches to investigate mechanisms of regulation of nutrient transport systems by hormones or cellular proliferative state are described.  相似文献   

16.
Membrane vesicles from rat thymocytes accumulate 2-aminoisobutyric acid in the presence of 0.1 M NaCl. Uptake is half maximal between 15 and 30 seconds after addition of the amino acid and reaches a plateau value after about 2 minutes. The uptake of 2-aminoisobutyric acid can be modulated by various sulfhydryl reagents. Reduced glutathione leads to an inhibition of uptake whereas oxidized glutathione increases uptake. Agents such as insulin and diamide which can induce disulfide formation lead to an activation of transport. These data indicate that uptake of the Na+-dependent amino acid, 2-aminoisobutyric acid, in thymocytes is modulated by a putative plasma membrane, sulfhydryl-containing protein.  相似文献   

17.
Gram‐negative bacteria secrete small particles called membrane vesicles (MVs) into the extracellular milieu. While MVs have important roles in delivering toxins from pathogenic bacteria to eukaryotic cells, these vesicles also play ecological roles necessary for survival in various environmental conditions. Pseudomonas aeruginosa, which lives in soil, ocean, plant, animal and human environments, has become a model organism for studying these small extracellular particles. Such studies have increased our understanding of the function and biogenesis of bacterial MVs. Pseudomonas aeruginosa MVs possess versatile components and chemical substances with unique structures. These characteristics allow MVs to play their multifunctional biological roles, including microbial interaction, maintenance of biofilm structure and host infection. This review summarizes the comprehensive biochemical and physiochemical properties of MVs derived from P. aeruginosa. These studies will help us understand their biological roles of MVs not only in pathogenicity but also in microbial ecology. Also, the mechanisms of MV production, as currently understood, are discussed.  相似文献   

18.
Abstract A bacterium, which utilizes p -toluidine as sole source of carbon and energy was isolated from soil. The bacterium was identified as Pseudomonas testosteroni .
From enzymatic studies we propose the following pathway for the degradation of p -toluidine: p -toluidine is oxidatively converted to 4-methyl-catechol, which is then cleaved by a meta -pyrocatechase to 2-hydroxy-5-methyl- cis-cis -muconate semialdehyde.  相似文献   

19.
20.
Glutamine transport by rat basolateral membrane vesicles   总被引:1,自引:0,他引:1  
Glutamine, a neutral amino acid, is unlike most amino acids, has two amine moieties which underlies its importance as a nitrogen transporter and a carrier of ammonia from the periphery to visceral organs. The gastrointestinal tract utilizes glutamine as a respiratory substrate. The intestinal tract receives glutamine from the luminal side and from the arterial side through the basolateral membranes of the enterocyte. This study characterizes the transport of glutamine by basolateral membrane vesicles of the rat. Basolateral membranes were prepared by a well validated technique of separation on a percoll density gradient. Membrane preparations were enriched with Na+/K+-ATPase and showed no 'overshoot' phenomena with glucose under sodium-gradient conditions. Glutamine uptake represented transport into the intravesicular space as evident by an osmolality study. Glutamine uptake was temperature sensitive and driven by an inwardly directed sodium gradient as evident by transient accumulation of glutamine above the equilibrium values. Kinetics of glutamine uptake under both sodium and potassium gradients at glutamine concentrations between 0.01 and 0.6 mM showed saturable processes with Vmax of 0.39 +/- 0.008 and 0.34 +/- 0.05 nmol/mg protein per 15 s for both sodium-dependent and sodium-independent processes, respectively. Km values were 0.2 +/- 0.01 and 0.55 +/- 0.01 mM, respectively. pH optimum for glutamine uptake was 7.5. Imposition of negative membrane potential by valinomycin and anion substitution studies enhanced the sodium-dependent uptake of glutamine suggesting an electrogenic process, whereas the sodium-independent uptake was not enhanced suggesting an electroneutral process. Other neutral amino acids inhibited the initial uptake of glutamine under both sodium-dependent and sodium-independent conditions. We conclude that glutamine uptake by basolateral membranes occurs by carrier-mediated sodium-dependent and sodium-independent processes. Both processes exhibit saturation kinetics and are inhibited by neutral amino acids. The sodium-dependent pathway is electrogenic whereas the sodium-independent pathway is electroneutral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号