首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major fecal bile acid metabolites related to lithocholic acid were resolved by high-performance liquid chromatography (hplc). The uv-absorbing p-nitrobenzyl ester derivatives of lithocholic, isolithocholic, 3-keto-5β-cholanic, and 5β-cholanic acids were prepared using the reagent o,p-nitrobenzyl-N,N′-diisopropylisourea. Separation was achieved in less than 20 min on a microparticulate silica column using isocratic elution with 2% isopropanol in isooctane as the mobile phase. The p-chlorobenzoyl esters of methylated lithocholic and isolithocholic acids were also prepared but required purification by thin-layer chromatography before separation by hplc. These derivatives were eluted from a Porasil T column using 5% diisopropyl ether in isooctane as the mobile phase. Lithocholic and isolithocholic acids produced by microbial metabolism of [14COOH]taurolithocholic acid were separated and identified by preparing p-nitrobenzyl derivatives and monitoring the column effluent for both uv and radioactivity. This technique is a rapid and sensitive method for isolating bile acid metabolites.  相似文献   

2.
A method for the determination of the aromatic acid metabolites of phenylalanine in brain by gas-liquid chromatography is described. Procedures were developed for the extraction and purification of the metabolites, the preparation of their trimethylsilyl derivatives, the separation and identification of these derivatives by gas-liquid chromatography, and the quantification of the metabolites by employing the internal reference standards phenylvaleric and o-hydroxyphenylacetic acids with the detector molar response factors. The metabolites in the hyperphenylalaninemic brain were identified as the trimethylsilyl ester of phenylacetic, ester-ethers of mandelic and phenyllactic, and the ester-enol ether of the oxime of phenylpyruvic acid.  相似文献   

3.
The in vitro transformation of chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), and 7-keto-lithocholic (6-keto-LCA) acid by fecal specimens from five patients with cholesterol gallstones, treated with UDCA and CDCA, and five healthy control subjects was compared. Degradation of CDCA, UDCA, and 7-keto-LCA to lithocholic acid (LCA) was generally faster in fecal cultures of treated patients than in those of controls; this finding correlates with the significantly greater number of microorganisms found to be able to produce LCA from both CDCA and UDCA. Comparative analysis of intestinal microflora composition in the two groups indicates that only the number of bifidobacteria, Gram-positive anaerobic cocci, and coliforms is increased in patients compared with normal, untreated subjects.  相似文献   

4.
A method is presented for the estimation by gas-liquid chromatography of the in vitro metabolism of pentobarbital to its alcoholic metabolite, hydroxypentobarbital (5-ethyl-5-(1′-methyl-3′-hydroxybutyl) barbituric acid). The parent compound and metabolite are extracted from the incubation medium with ethyl acetate, the ethyl acetate is removed, and the trimethylsilyl derivatives are formed. These are separated and the metabolite quantitated on a gas-liquid chromatograph with a hydrogen flame ionization detector. As little as 1% metabolism can be readily determined. The identification of the products was confirmed by thin-layer chromatography and combination gas-liquid chromatography-mass spectrography. The present method offers a compromise between the sensitivity of the method employing radiolabeled pentobarbital and the convenience of measuring the disappearance of substrate.  相似文献   

5.
The formation of ursodeoxycholic acid from chenodeoxycholic acid and the role of 7-ketolithocholic acid as an intermediate in this biotransformation were studied in vitro in fecal incubations as well as in vivo in the human colon. [24-14C]-Labeled 7-ketolithocholic and chenodeoxycholic acids were studied at various concentrations, and the biotransformation products were analyzed by thin-layer chromatography, gas-liquid chromatography, and mass spectrometry. There was rapid colonic conversion of 7-ketolithocholic acid to ursodeoxycholic acid and, to a lesser extent, to chenodeoxycholic acid. The reduction of 7-ketolithocholic to ursodeoxycholic acid proceeded significantly faster anaerobically and at acid pH than under aerobic and alkaline conditions. When chenodeoxycholic acid was incubated in vitro or instilled into the colon, various amounts of 7-ketolithocholic and ursodeoxycholic acids were formed. The formation of 7-ketolithocholic acid was favored by alkaline conditions. Isotope dilution studies, in which trace amounts of labeled 7-ketolithocholic acid were incubated with unlabeled chenodeoxycholic acid, indicate 7-ketolithocholic acid to be the major intermediate in the intestinal bacterial conversion of chenodeoxycholic to ursodeoxycholic acid.  相似文献   

6.
E Watson  B Travis  S Wilk 《Life sciences》1974,15(12):2167-2178
Simultaneous determination of the major metabolites of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in rat striatum has been achieved by gas-liquid chromatography. Striatal tissue from one rat was homogenized in IN HCl and one-tenth of the sample extracted with ethyl ether. After evaporation of the ether, the residue was reacted with a combination of 1-chloro-1,1,3,3,3-pentafluor-2-propanol and pentafluoropropionic anhydride followed by reaction with pentafluoropropionic anhydride. The derivatives were chromatographed on a 3% JXR column and quantitated using electron capture detection. The propionic homologs of DOPAC and HVA served as internal standards. The steady state levels of DOPAC and HVA were found to be 0.90 μg/gm±0.21 S.D. (N=12) and 0.66 μg/gm±0.16 S.D. (N=12) respectively.  相似文献   

7.
Valproic acid, an antiepileptic drug, is transformed into diunsaturated metabolites in humans. Synthesis of the geometric isomers of 2-(1'-propenyl)-2-pentenoic acid and 2-(1'-propenyl)-3-pentenoic acid was attempted using known procedures. The final product, a mixture of isomers, was converted into tert-butyldimethylsilyl or ethyl derivatives. Capillary gas-liquid chromatography-mass spectrometry analysis of the derivatives showed at least three isomeric dienoic acids from synthesized products. Argentation thin-layer chromatography was effective in resolving the isomeric mixture into a single isomer or mixture of two isomers. Thin-layer chromatography and gas-liquid chromatography retention data, photochemical isomerization studies, and nuclear magnetic resonance spectrometry were used to characterize the dienoic acids. By comparison of the retention times of the diunsaturated metabolites with synthesized reference compounds, the structure assigned to the major diunsaturated metabolite is 2-[(E)-1'-propenyl](E)-2-pentenoic acid.  相似文献   

8.
Acyl-adenylates and acyl-CoA thioesters of bile acids (BAs) are reactive acyl-linked metabolites that have been shown to undergo transacylation-type reactions with the thiol group of glutathione (GSH), leading to the formation of thioester-linked GSH conjugates. In the current study, we examined the transformation of cholyl-adenylate (CA-AMP) and cholyl-coenzyme A thioester (CA-CoA) into a cholyl-S-acyl GSH (CA-GSH) conjugate by rat hepatic glutathione S-transferase (GST). The reaction product was analyzed by liquid chromatography (LC)/electrospray ionization (ESI)-linear ion trap mass spectrometry (MS). The GST-catalyzed formation of CA-GSH occurred with both CA-AMP and CA-CoA. Ursodeoxycholic acid, lithocholic acid, and 2,2,4,4-2H4-labeled lithocholic acid were administered orally to biliary fistula rats, and their corresponding GSH conjugates were identified in bile by LC/ESI-MS2. These in vitro and in vivo studies confirm a new mode of BA conjugation in which BAs are transformed into their GSH conjugates via their acyl-linked intermediary metabolites by the catalytic action of GST in the liver, and the GSH conjugates are then excreted into the bile.  相似文献   

9.
The hydroxylation of lithocholic acid (3 alpha-hydroxy-5 beta-cholanoic acid) by adult male Sprague-Dawley rat liver microsomes supplemented with NADPH was studied. Metabolites were separated by a combination of thin-layer chromatography and high pressure liquid chromatography, both with and without prior methylation and acetylation of the samples. The resulting products were characterized by thin-layer, gas-liquid, and high pressure liquid chromatography by comparison with authentic bile acid standards; final structure determination was by proton nuclear magnetic resonance spectroscopy and by mass spectrometry. The following reaction products were found: 3 alpha, 6 beta-dihydroxy-5 beta-cholanoic acid (80% of total metabolites) and 3 alpha, 6 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 7 alpha-dihydroxy-5 beta-cholanoic, 3 alpha, 6 beta,7 beta-trihydroxy-5 beta-cholanoic, and 3 alpha-hydroxy-6-oxo-5 beta-cholanoic acids (less than or equal to 5% each). In addition, one unidentified trihydroxylic bile acid and several minor compounds were present. It is concluded that four different hydroxylation reactions of lithocholic acid, namely the predominant 6 beta as well as the minor 6 alpha, 7 alpha, and 7 beta hydroxylations, are catalyzed by rat hepatic microsomes; 7 beta-hydroxylation may occur only with dihydroxylated bile acids but not with lithocholate itself. The presence of the 6-oxo bile acid can be explained either by direct oxidation of a hydroxyl group by cytochrome P-450, or by the action of microsomal dehydrogenase(s) which could also catalyze the epimerization of hydroxyl groups via their oxidation. The results form the basis of a proposed scheme of the oxidative metabolism of lithocholic acid in rat liver microsomes.  相似文献   

10.
Isoflavonoids found in legumes, such as soybeans, are converted by intestinal bacteria to metabolites that might have increased or decreased estrogenic activity. Variation in the effects of dietary isoflavonoids among individuals has been attributed to differences in their metabolism by intestinal bacteria. To investigate this variation, the metabolism of the isoflavonoid daidzein by bacteria from ten fecal samples, provided at different times by six individuals on soy-containing diets, was compared. After anaerobic incubation of bacteria with daidzein for 2 weeks, four samples had metabolized daidzein and six samples had not. Three of the positive samples were from individuals whose microflora had not metabolized daidzein in previous samples. Dihydrodaidzein was observed in one sample, dihydrodaidzein and equol in another sample, and equol and O-desmethylangolensin in two other samples. These results corroborate the hypothesis that the microflora of the gastrointestinal tract of an individual influences the particular isoflavone metabolites produced following consumption.  相似文献   

11.
The rates of metabolism of Sudan I and II and Para Red by human intestinal microflora were high compared to those of Sudan III and IV under anaerobic conditions. Metabolites of the dyes were identified as aniline, 2,4-dimethylaniline, o-toluidine, and 4-nitroaniline through high-performance liquid chromatography and liquid chromatography electrospray ionization tandem mass spectrometry analyses. These data indicate that human intestinal bacteria are able to reduce Sudan dyes to form potentially carcinogenic aromatic amines.  相似文献   

12.
Bile acid amides and oxazolines were synthesized by a sequence of steps involving the reaction of the free bile acid with formic acid to yield the formyloxy derivative, preparation of the formyloxy acid chloride, condensation of the acid chloride with 2-amino-2-methyl-1-propanol to give the amide and, finally, cyclization of the amide with thionyl chloride to give the oxazoline. The oxazolines were characterized by physical constants, thin layer and gas-liquid chromatography and identified by elemental analysis and gas-liquid chromatography-mass spectrometry. Some of the bile acid oxazoline derivatives alter the activity of bacterial 7-dehydroxylases in vitro, and inhibit the growth of certain anaerobic bacteria in pure culture.  相似文献   

13.
Milligram amounts of [3 beta-3H]lithocholic (3 alpha-hydroxy-5 beta-cholanoic) acid were administered by intravenous infusion to rats prepared with a biliary fistula. Analysis of sequential bile samples by thin-layer chromatography (TLC) demonstrated that lithocholic acid glucuronide was present in bile throughout the course of the experiments and that its secretion rate paralleled that of total isotope secretion. Initial confirmation of the identity of this metabolite was obtained by the recovery of labeled lithocholic acid after beta-glucuronidase hydrolysis of bile samples. For detailed analysis of biliary metabolites of [3H]lithocholic acid, pooled bile samples from infused rats were subjected to reversed-phase chromatography and four major labeled peaks were isolated. After complete deconjugation, the two major compounds in the combined first two peaks were identified as murideoxycholic (3 alpha, 6 beta-dihydroxy-5 beta-cholanoic) and beta-muricholic (3 alpha, 6 beta, 7 beta-trihydroxy-5 beta-cholanoic) acids and the third peak was identified as taurolithocholic acid. The major component of the fourth peak, after isolation, derivatization (to the methyl ester acetate), and purification by high pressure liquid chromatography (HPLC), was positively identified by proton nuclear magnetic resonance as lithocholic acid 3 alpha-O-(beta-D-glucuronide). These studies have shown, for the first time, that lithocholic acid glucuronide is a product of in vivo hepatic metabolism of lithocholic acid in the rat.  相似文献   

14.
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.  相似文献   

15.
Evidence of epoxide hydrase activity in human intestinal microflora   总被引:1,自引:0,他引:1  
Cholesterol-5 alpha, 6 alpha-epoxide has been implicated as an etiologic agent in human colon cancer. The epoxide is metabolized by human intestinal microflora to a product which was characterized by thin-layer and gas-liquid chromatography as well as combined gas-liquid chromatography-mass spectrometry. Chromatographic properties are identical with authentic cholestan-3 beta, 5 alpha, 6 beta-triol, and these results suggest that microbial epoxide hydrase activity is present in the human colon.  相似文献   

16.
A high-performance liquid chromatography tandem mass spectrometry (HPLC–MS/MS) method employing electrospray ionization (ESI) has been developed for simultaneous determination of lancemaside A (3-O-β-d-glucuronopyranosyl-3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) and its metabolites in mouse plasma. When lancemaside A (60 mg/kg) was orally administered to mice, echinocystic acid was detected in the blood. Tmax and Cmax of the echinocystic acid were 6.5 ± 1.9 h and 56.7 ± 29.1 ppb. Orally administered lancemaside A was metabolized to lancemaside X (3β, 16α-dihydroxyolean-12-en-28-oic acid 28-O-β-d-xylopyranosyl(1→3)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-α-l-arabinopyranosyl ester) by intestinal microflora in mice, which was metabolized to echinocystic acid by intestinal microflora and/or intestinal tissues. Human intestinal microflora also metabolized lancemaside A to echinocystic acid via lancemaside X. These results suggest that the metabolism by intestinal microflora may play an important role in pharmacological effects of orally administered lancemaside A.  相似文献   

17.
Lactobacillus paracasei subsp. paracasei LC01 (LC01) can tolerate intestinal stresses and has antioxidant activity. To evaluate the effect of the bacterium on human intestinal microflora, a randomized, double-blind, placebo-controlled human trial was carried out. Fifty-two healthy adult volunteers were randomized equally to two groups. One group consumed 12% (wt/vol) skimmed milk supplemented with 1010 CFU of LC01 each day for the 4-week treatment period, and then consumed placebo in the next treatment period, separated by a 2-week washout. The other group followed the reverse order. Group-specific real-time PCR and biochemical analyses was used to determine the intestinal bacterial composition of fecal samples collected at the end of every period, and the concentration of short-chain fatty acids and ammonia. A significant inhibition in fecal Escherichia coli and increase in Lactobacillus, Bifidobacterium, and Roseburia intestinalis were observed after consumption of LC01. Acetic acid and butyric acid were significantly higher in the probiotic stage and fecal ammonia was significantly lower. The results indicated a modulation effect of LC01 on the intestinal microflora of young adults, suggesting a beneficial effect on bowel health. LC01 may have potential value as a probiotic.  相似文献   

18.
This paper introduces a new type of system to simulate conditions in the large intestine. This system combines removal of metabolites and water with peristaltic mixing to obtain and handle physiological concentrations of microorganisms, dry matter and microbial metabolites. The system has been designed to be complementary to the dynamic multi-compartmental system that simulates conditions in the stomach and small intestine described by Minekus et al. [Minekus M, Marteau P, Havenaar R, Huis in't Veld JHJ (1995) ATLA 23:197–209]. High densities of microorganisms, comparable to those found in the colon in vivo, were achieved by absorption of water and dialysis of metabolites through hollow-fibre membranes inside the reactor compartments. The dense chyme was mixed and transported by peristaltic movements. The potential of the system as a tool to study fermentation was demonstrated in experiments with pectin, fructo-oligosaccharide, lactulose and lactitol as substrates. Parameters such as total acid production and short-chain fatty acid (SCFA) patterns were determined with time to characterize the fermentation. The stability of the microflora in the system was tested after inoculation with fresh fecal samples and after inoculation with a microflora that was main-tained in a fermenter. Both approaches resulted in total anaerobic bacterial counts higher than 1010 colony-forming units/ml with physiological levels of Bifidobacterium, Lactobacillus, Enterobacteriaceae and Clostridium. The dry matter content was approximately 10%, while the total SCFA concentration was maintained at physiological concentrations with similar molar ratios for acetic acid, propionic acid and butyric acid as measured in vivo. Received: 4 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

19.
Labeled beta-muricholic acid was obtained from germfree rats given [24-14C]-chenodeoxycholic acid. It was crystallized with the same unlabeled bile acid extracted from germfree rat pooled biles. Five patients fitted with a T-tube after cholecystectomy were given orally 100 mg of the bile acid. Metabolites of beta-muricholic acid in bile, urine and feces were studied. Glyco- and tauro-beta-muricholic acid were the only metabolites detected in bile. The urinary bile acid pattern was complex and included free, glyco- and sulfoconjugated beta-muricholic acid, but no glucuronide was observed. Analysis of fecal bile acid showed very few metabolites: the 3 beta-epimer was identified; the 6 beta- and 7 beta-hydroxyls were apparently not transformed by human intestinal microflora.  相似文献   

20.
The human colon contains a diverse microbial population which contributes to degradation and metabolism of food components. Drug metabolism in the colon is generally poorly understood. Metabolomics techniques and in vitro colon models are now available which afford detailed characterization of drug metabolites in the context of colon metabolism. The aim of this work was to identify novel drug metabolites of Simvastatin (SV) by using an anaerobic human in vitro colon model at body temperature coupled with systems biology platform, excluding the metabolism of the host liver and intestinal epithelia. Comprehensive two-dimensional gas chromatography with a time-of-flight mass spectrometry (GC×GC-TOFMS) was used for the metabolomic analysis. Metabolites showing the most significant differences in the active faecal suspension were elucidated in reference with SV fragmentation and compared with controls: inactive suspension or buffer with SV, or with active suspension alone. Finally, time courses of selected metabolites were investigated. Our data suggest that SV is degraded by hydrolytic cleavage of methylbutanoic acid from the SV backbone. Metabolism involves demethylation of dimethylbutanoic acid, hydroxylation/dehydroxylation and β-oxidation resulting in the production of 2-hydroxyisovaleric acid (3-methyl-2-hydroxybutanoic acid), 3-hydroxybutanoic acid and lactic acid (2-hydroxypropanoic acid), and finally re-cyclisation of heptanoic acid (possibly de-esterified and cleaved methylpyranyl arm) to produce cyclohexanecarboxylic acid. Our study elucidates a pathway of colonic microbial metabolism of SV as well as demonstrates the applicability of the in vitro colon model and metabolomics to the discovery of novel drug metabolites from drug response profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号