首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The effects of hydrocortisone on newborn rat liver were studied by using biochemical assays, electron microscopy and quantitative morphometry. Hydrocortisone increased the number of lysosomes in the hepatocytes. Most of the lysosomes represented glycogen-containing autophagic vacuoles. The glucocorticoid also increased the activity of the liver glycogen-hydrolyzing acid glucosidase and the breakdown of glycogen inside lysosomes. The activity of the liver acid mannose 6-phosphatase was decreased. This may be related to the stimulation of autophagic mechanisms in the newborn rat hepatocytes.  相似文献   

3.
1. A herbicide, paraquat (1,1'dimethyl-4,4'-bipyridilium-dichloride) was administered to carp in 0.5-10.0 ppm concentrations, respectively, and blood sugar level, glucose-6-phosphatase and glycogen phosphorylase activities of liver were determined. 2. Paraquat treatment caused an increase of blood sugar level and enhanced phosphorylase and glucose-6-phosphatase activities. 3. Paraquat can induce alterations in endoplasmic reticulum that might contribute to the changes in glucose-6-phosphatase activity, resulting in an increase of blood glucose level and/or all the effects can be attributed to a high level of circulating epinephrine produced by paraquat toxicosis.  相似文献   

4.
5.
6.
Effect of galactosamine on glycogenolysis was studied in isolated hepatocytes. It was found that addition of galactosamine strongly inhibited glycogenolysis in normal hepatocytes. Galactosamine-inhibited glycogenolysis was not stimulated by epinephrine or glucagon. This inhibition was specific as no such inhibition was observed with galactose, 2-deoxy-glucose or glucosamine. The glucagon-stimulated cyclic AMP formation in galactosamine-treated hepatocytes was the same as in normal cells; Glc-1-P and Glc-6-P did not accumulate nor was lactate formation enhanced. The glucose production by hepatocytes from regenerating liver was only slightly inhibited by galactosamine and glucagon addition stimulated glycogenolysis in the presence of the amino sugar.  相似文献   

7.
Mixtures of (14)C-labelled glucose plus pyruvate were incubated either with rat diaphragm or slices of rat liver. Incorporation of glucose carbon into glycogen was compared with its incorporation into glucose 6-phosphate relative to the incorporation of pyruvate carbon into these metabolic products. There was no preferential incorporation of glucose carbon relative to pyruvate carbon into glycogen compared with glucose 6-phosphate in the liver slices, but there was in diaphragm. On the assumption that glucose 6-phosphate is a necessary intermediate in the conversion of pyruvate carbon into glycogen, this is evidence for the existence in muscle, but not in liver, of more than one pool of glucose 6-phosphate or of a pathway from glucose to glycogen without glucose 6-phosphate as an intermediate. Galactose carbon, relative to pyruvate carbon, was preferentially incorporated into liver glycogen, so that a substrate converted in liver into glycogen without glucose 6-phosphate as an intermediate could be detected by this approach.  相似文献   

8.
Liver homogenates of avian species, but not of mammals, form glycogen from glucose, mannose, fructose and galactose. Incorporation of labelled glucose, fructose and mannose, but not of labelled galactose, into glycogen is diluted isotopically by unlabelled glucose. Except for fructose, glycogen formation from other substrates by pigeon liver homogenates compares favourably with that from the same substrates in pigeon liver slices. Optimum conditions for glycogen synthesis from glucose by pigeon liver homogenate are: medium of incubation, 0.175m-sucrose-45mm-potassium chloride-15mm-glycylglycine buffer, pH7.5; concentration of substrate, 15mm; concentration of tissue, less than 120mg./ml.; temperature of incubation, 37-43 degrees ; atmosphere, oxygen. Uncouplers of oxidative phosphorylation, Ca(2+), EDTA, PP(i), 2-deoxyglucose 6-phosphate and microsomal fraction of rat liver are inhibitory to glycogen synthesis from glucose. Starvation of pigeons for 24 and 48hr. leads to a slight stimulation of glycogen synthesis in their liver homogenates as compared with fed controls. Pigeon liver homogenates can be separated into subcellular fractions that on reconstitution can synthesize glycogen. All the enzymes of the glycogen pathway except soluble high-K(m) glucokinase are present in pigeon liver.  相似文献   

9.
10.
11.
Gluconeogenic pathway in liver and muscle glycogen synthesis after exercise   总被引:1,自引:0,他引:1  
To determine whether prior exercise affects the pathways of liver and muscle glycogen synthesis, rested and postexercised rats fasted for 24 h were infused with glucose (200 mumol.min-1.kg-1 iv) containing [6-3H]glucose. Hyperglycemia was exaggerated in postexercised rats, but blood lactate levels were lower than in nonexercised rats. The percent of hepatic glycogen synthesized from the indirect pathway (via gluconeogenesis) did not differ between exercised (39%) and nonexercised (36%) rats. In red muscle, glycogen was synthesized entirely by the direct pathway (uptake and phosphorylation of plasma glucose) in both groups. However, only approximately 50% of glycogen was formed via the direct pathway in white muscle of exercised and nonexercised rats. Therefore prior exercise did not alter the pathways of tissue glycogen synthesis. To further study the incorporation of gluconeogenic precursors into muscle glycogen, exercised rats were infused with either saline, lactate (100 mumol.min-1.kg-1), or glucose (200 mumol.min-1.kg-1), containing [6-3H]glucose and [14C(U)]lactate. Plasma glucose was elevated one- to twofold and three- to fourfold by lactate and glucose infusion, respectively. Plasma lactate levels were elevated by about threefold during both glucose and lactate infusion. Glycogen was partially synthesized via an indirect pathway in white muscle and liver of glucose- or lactate-infused rats but not in saline-infused animals. Thus participation of an indirect pathway in white skeletal muscle glycogen synthesis required prolonged elevation of plasma lactate levels produced by nutritive support.  相似文献   

12.
1. Vasopressin (anti-diuretic hormone, [8-arginine]vasopressin) stimulated the breakdown of glycogen in perfused livers of fed rats, at concentrations (50-600muunits/ml) that have been reported in the blood of intact rats, especially during acute haemorrhagic shock. 2. In perfused livers from starved rats, vasopressin (30-150muunits/ml) stimulated gluconeogenesis from a mixture of lactate, pyruvate and glycerol. 3. Vasopressin prevented accumulation of liver glycogen in the perfused liver of starved rats, or in starved intact rats. 4. The action of vasopressin on hepatic carbohydrate metabolism thus resembles that of glucagon; the minimum effective circulating concentrations of these hormones are of the same order (100pg/ml). 5. The stimulation of hepatic glucose output by vasopressin is discussed in connexion with the release of glucose and water from the liver.  相似文献   

13.
14.
Four glands of the house sparrow, chicken and turkey were examined histologically and for their content of amylase. These were the external and intermediate mandibular glands, the maxillary gland and glandula anguli oris of the sparrow and the anterior and posterior mandibular, maxillary and anguli oris glands of the chicken and turkey. Amylase was determined by a starch substrate slide method and by biochemical assay. General morphology and mucopolysaccharide staining are described. All four glands of the sparrow demonstrated significant amylolytic activity by the assay. In the external mandibular and anguli oris glands this activity could be traced to mucous and seromucous cells of origin by means of the starch substrate slide procedure. None of the glands of the chicken or turkey displayed significant amylolytic activity.  相似文献   

15.
16.
The mode of action of bombesin on amylase secretion was investigated in rat pancreatic acini. Bombesin induced a dose-dependent increase in inositol 1,4,5-trisphosphate and cytosolic free Ca2+. The threshold concentration capable of inducing both effects was 0.1 nM and the half-maximal dose of the peptide for Ca2+ mobilization was approximately 0.6 nM. By contrast, amylase release was approximately 30 times more sensitive than inositol 1,4,5-trisphosphate production and Ca2+ mobilization to bombesin action, with 1 pM being the first stimulatory concentration and a half-maximal effect at approximately 20 pM. The ability of low bombesin doses to trigger enzyme secretion was unaffected by chelation of extracellular Ca2+ with EGTA. In order to test whether the stimulation of amylase release was truly a Ca2+-independent response, the intracellular Ca2+ stores were depleted by pretreating acini with EGTA plus ionomycin, the Ca2+ ionophore. Under these conditions bombesin was still capable of eliciting a significant twofold enhancement of the secretory activity. These results indicate that bombesin, an agonist thought to activate secretion mainly through mobilization of Ca2+ from intracellular stores, elicits amylase release at low concentrations, independently of a concomitant rise in cytosolic free Ca2+. The relevance of these findings to the physiological regulation of pancreatic exocrine secretion is discussed.  相似文献   

17.
18.
The effect of inhibition of glycogen phosphorylase by 1,4-dideoxy-1,4-imino-d-arabinitol on rates of gluconeogenesis, gluconeogenic deposition into glycogen, and glycogen recycling was investigated in primary cultured hepatocytes, in perfused rat liver, and in fed or fasted rats in vivo clamped at high physiological levels of plasma lactate. 1,4-Dideoxy-1,4-imino-d-arabinitol did not alter the synthesis of glycerol-derived glucose in hepatocytes or lactate-derived glucose in perfused liver or fed or fasted rats in vivo. Thus, 1,4-dideoxy-1,4-imino-d-arabinitol inhibited hepatic glucose output in the perfused rat liver (0.77 +/- 0.19 versus 0.33 +/- 0.09, p < 0.05), whereas the rate of lactate-derived gluconeogenesis was unaltered (0.22 +/- 0.09 versus 0.18 +/- 0.08, p = not significant) (1,4-dideoxy-1,4-imino-d-arabinitol versus vehicle, micromol/min * g). Overall, the data suggest that 1,4-dideoxy-1,4-imino-d-arabinitol inhibited glycogen breakdown with no direct or indirect effects on the rates of gluconeogenesis. Total end point glycogen content (micromol of glycosyl units/g of wet liver) were similar in fed (235 +/- 19 versus 217 +/- 22, p = not significant) or fasted rats (10 +/- 2 versus 7 +/- 2, p = not significant) with or without 1,4-dideoxy-1,4-imino-d-arabinitol, respectively. The data demonstrate no glycogen cycling under the investigated conditions and no effect of 1,4-dideoxy-1,4-imino-d-arabinitol on gluconeogenic deposition into glycogen. Taken together, these data also suggest that inhibition of glycogen phosphorylase may prove beneficial in the treatment of type 2 diabetes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号