首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long-term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV-induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self-renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

6.
Solar ultraviolet radiation (UV) is a major environmental factor that dramatically alters the homeostasis of the skin as an organ by affecting the survival, proliferation and differentiation of various cutaneous cell types. The effects of UV on the skin include direct damage to DNA, apoptosis, growth arrest, and stimulation of melanogenesis. Long‐term effects of UV include photoaging and photocarcinogenesis. Epidermal melanocytes synthesize two main types of melanin: eumelanin and pheomelanin. Melanin, particularly eumelanin, represents the major photoprotective mechanism in the skin. Melanin limits the extent of UV penetration through the epidermal layers, and scavenges reactive oxygen radicals that may lead to oxidative DNA damage. The extent of UV‐induced DNA damage and the incidence of skin cancer are inversely correlated with total melanin content of the skin. Given the importance of the melanocyte in guarding against the adverse effects of UV and the fact that the melanocyte has a low self‐renewal capacity, it is critical to maintain its survival and genomic integrity in order to prevent malignant transformation to melanoma, the most fatal form of skin cancer. Melanocyte transformation to melanoma involves the activation of certain oncogenes and the inactivation of specific tumor suppressor genes. This review summarizes the current state of knowledge about the role of melanin and the melanocyte in photoprotection, the responses of melanocytes to UV, the signaling pathways that mediate the biological effects of UV on melanocytes, and the most common genetic alterations that lead to melanoma.  相似文献   

7.
Central nervous system (CNS) stem cells have become the subject of many laboratories' efforts, presentations, and publications. Yet, in the stem cell world, CNS cells are viewed with skepticism. This is likely due to a dearth of biology (in vivo function) to accompany a flurry of phenomenological and restorative neurology studies. In this article, we compare and contrast the biological knowledge of adult forebrain epidermal growth factor-responsive neural stem cells that has emerged from our laboratories with that of hematopoietic stem cells, using two recent papers in the latter field as specific examples. A comparison of stem cell location, lineage, and repopulation suggests that our understanding of CNS stem cell biology is immature. We conclude that a greater focus on in vivo biology will enhance our knowledge and understanding of CNS stem cells. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 307–314, 1998  相似文献   

8.
Eugene E. Harris and Jody Hey (1999). Human Demography in the Pleistocene: Do Mitochondrial and Nuclear Genes Tell the Same Story? Evol. Anthropol. 8: 81–86. On page 84 at the end of 1st paragraph of the 2nd column should read “. . .intergenetic variation Xq 13.3 to about 535,000 years,39. . .” On page 84 in the 2nd paragraph of the 3rd column should read “. . .and seem to indicate widespread or restricted gene flow among populations.”19,48,49 On page 85 in the 2nd paragraph of the 1st column should read “. . .united by gene flow at zones of overlap.”53  相似文献   

9.
Basing his analysis on Kroeber's ‘The superorganic’ (1917 Kroeber, A. L. 1917. The superorganic.. American Anthropologist, 19: 163213. [Crossref] [Google Scholar]) and ‘Eighteen professions’ (1915 Kroeber, A. L. 1915. Eighteen professions.. American Anthropologist, 17: 28388. [Crossref] [Google Scholar]), Derek Freeman has put forward the notion of a ‘Boasian paradigm’, whereby Kroeber is alleged to have perpetuated the biology/culture split suggested by Boas. I argue, instead, that there is a strong innatist element in Kroeber's writings throughout his long career; and that the articles noted above need to be placed in the social and intellectual contexts of their time, particularly the encroachment of the eugenics movement on social theory and its application to immigration restriction.  相似文献   

10.
Jason S. King 《Autophagy》2012,8(7):1159-1162
Autophagy is conserved throughout the eukaryotes and for many years, work in Saccharomyces cerevisiae has been at the forefront of autophagy research. However as our knowledge of the autophagic machinery has increased, differences between S. cerevisiae and mammalian cells have become apparent. Recent work in other organisms, such as the amoeba Dictyostelium discoideum, indicate an autophagic pathway much more similar to mammalian cells than S. cerevisiae, despite its earlier evolutionary divergence. S. cerevisiae therefore appear to have significantly specialized, and the autophagic pathway in mammals is much more ancient than previously appreciated, which has implications for how we interpret data from organisms throughout the eukaryotic tree.  相似文献   

11.
ABSTRACT. Sorosphaerula nom. n. is introduced to replace the phytomyxean generic name Sorosphaera J. Schröter, which is preoccupied by the foraminiferan genus Sorosphaera Brady. As it is agreed now that both the Foraminifera and the Phytomyxea belong to the Rhizaria, this homonomy within the same supergroup of eukaryotes needs to be revised. To avoid future homonomy, we recommend that the International Code of Zoological Nomenclature be applied for future taxonomic work on Phytomyxea.  相似文献   

12.
13.
14.
15.
16.
17.
Insall R 《Current biology : CB》2003,13(9):R353-R354
Aggregating Dictyostelium cells secrete cyclic AMP to attract their neighbours by chemotaxis. It has now been shown that adenylyl cyclase is enriched in the rear of cells, and this localisation is required for normal aggregation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号