首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the immature rat uterus, high concentrations of androgens competed specifically with estradiol on the estrogen receptor (RE). This competition was stereospecific for C19 steroids bearing a 17β and/or 3 hydroxyl group. Very low affinity ligands, such as testosterone, could not compete with estradiol at equilibrium but decreased the association rate of estradiol on its receptor. High doses (> 0.4mg) of 5 α aihydrotestosterone provoked in vivo as in vitro the nuclear translocation of RE. The nuclear receptor thus formed displayed the same 5.2 S sedimentation constant as that induced by estradiol. We conclude that the weak affinity binding of androgens to the estrogen receptor is sufficient to induce its nuclear translocation in vivo provided androgen concentration is high enough in uterus to occupy the estradiol binding site. Conversely, progesterone which does not bind RE could not provoke its nuclear translocation.  相似文献   

2.
Estradiol-receptor complex from rat uterus has been shown to have an affinity for DNA-cellulose and ATP-Sepharose. This DNA and ATP binding of estradiol receptor was observed to be sensitive to low concentrations (0.01–0.2mM) of aurintricarboxylic acid. The inhibitor was more effective when added to preparations that contained activated estradiol-receptor complex. Steroid binding properties of the receptor remained intact under the above conditions as judged by charcoal adsorption assays and sucrose gradient analysis. In addition, a 40% inhibition in the nuclear translocation of cytosol estradiol receptor was observed when rat uteri were incubated with 10nM [3H] estradiol under an atmosphere of 95% O2 and 5% CO2 in the presence of aurintric-carboxylic acid. Our results suggest that aurintricarboxylic acid is an effective inhibitor of rat uterine estradiol receptor and that it may be acting by interfering with site(s) on the estradiol receptor which may be exposed upon activation and are subsequently involved in processes such as ATP binding, nuclear uptake and DNA binding.  相似文献   

3.
Estradiol binding components in the cytosol and nuclear fractions of the ovary from immature rats (22–28 days old) were characterized by in vitro methods. Several of the biochemical characteristics of the estradiol binding components in the ovarian tissue were compared with the estradiol receptor from the uterus. The results suggest that the ovarian estradiol binding components are similar to the specific high affinity estradiol receptors in the uterus. In the cytosol of intact rat ovary a significant fraction of the total binding sites was found to be occupied, presumably by the endogenous estrogen. Following hypophysectomy there was a significant increase in the available cytosol binding sites. Evidence for translocation of cytosol receptor-estrogen (RE) complex to the nucleus was obtained for the ovary. The sedimentation properties of the RE complex of the ovary and the uterus are similar. The ovarian cytosol RE complex sediments at 7-8S in glycerol gradients at low ionic strength and at 4S in sucrose gradients at high ionic strength. Following extraction with 0.4 M KCl the ovarain nuclear RE complex sediments at 5S in sucrose gradients which is identical to that of the uterine nuclear receptor.  相似文献   

4.
5.

Background

Insulin-like growth factor binding protein (IGFBP)-5 levels are increased in systemic sclerosis (SSc) skin and lung. We previously reported that IGFBP-5 is a pro-fibrotic factor that induces extracellular matrix (ECM) production and deposition. Since IGFBP-5 contains a nuclear localization signal (NLS) that facilitates its nuclear translocation, we sought to examine the role of nuclear translocation on the fibrotic activity of IGFBP-5 and identify IGFBP-5 binding partners relevant for its nuclear compartmentalization.

Methods

We generated functional wild type IGFBP-5 and IGFBP-5 with a mutated NLS or a mutated IGF binding site. Abrogation of nuclear translocation in the NLS mutant was confirmed using immunofluorescence and immunoblotting of nuclear and cytoplasmic cellular extracts. Abrogation of IGF binding was confirmed using western ligand blot. The fibrotic activity of wild type and mutant IGFBP-5 was examined in vitro in primary human fibroblasts and ex vivo in human skin. We identified IGFBP-5 binding partners using immunoprecipitation and mass spectrometry. We examined the effect of nucleolin on IGFBP-5 localization and function via sequence-specific silencing in primary human fibroblasts.

Results

Our results show that IGFBP-5-induced ECM production in vitro in primary human fibroblasts is independent of its nuclear translocation. The NLS-mutant also induced fibrosis ex vivo in human skin, thus confirming and extending the in vitro findings. Similar findings were obtained with the IGF-binding mutant. Nucleolin, a nucleolar protein that can serve as a nuclear receptor, was identified as an IGFBP-5 binding partner. Silencing nucleolin reduced IGFBP-5 translocation to the nucleus but did not block the ability of IGFBP-5 to induce ECM production and a fibrotic phenotype.

Conclusions

IGFBP-5 transport to the nucleus requires an intact NLS and nucleolin. However, nuclear translocation is not necessary for IGFBP-5 fibrotic activity; neither is IGF binding. Our data provide further insights into the role of cellular compartmentalization in IGFBP-5-induced fibrosis.  相似文献   

6.
Dendritic cells (DC) and macrophages (Mφ) are well known as important effectors of the innate immune system and their ability to produce IL-12 indicates that they possess the potential of directing acquired immunity toward a Th1-biased response. Interestingly, the intracellular parasite Leishmania has been shown to selectively suppress Mφ IL-12 production and are DC the principal source of this cytokine. The molecular details of this phenomenon remain enigmatic. In the present study we examined the effect of Leishmania mexicana lipophosphoglycan (LPG) on the production of IL-12, TNF-α, and IL-10 and nuclear translocation of NF-κB. The results show that LPG induced more IL-12 in human DC than in monocytes. This difference was due in part to nuclear translocation of NF-κB, since LPG induced more translocation in DC than in monocytes. These results suggest that Leishmania LPG impairs nuclear translocation of NF-κB in monocytes with the subsequent decrease in IL-12 production.  相似文献   

7.
The nuclear localization of estrogen receptors has been examined under conditions which minimize redistribution and localization artifacts. A procedure is presented which rapidly lyses suspensions of cells from immature rat uteri by using 0.04% Triton X-100 in isotonic buffer. The ‘nuclei’ which are obtained after lysis have a median diameter of 1μm and are devoid of nuclear membranes. There is close agreement between the number of cells before lysis and the number of nuclear particles after lysis. Triton X-100 gave no interference with quantitative binding of estradiol to receptor and no alteration in the sedimentation behavior of receptor on sucrose gradients containing high or low salt. Using this procedure to monitor the dynamics of estrogen receptor distribution within uterine cells after exposure to estradiol, translocation of estrogen receptor to the nucleus was observed to occur at a rate slightly slower than the rate at which estradiol was specifically bound to free cells or receptors. The difference in these rates is compatible with a model in which estradiol must first bind to the receptor before the binding complex moves to the nucleus. The rate of nuclear translocation was temperature-dependent and was observed to occur at 0 °C, provided that enough time was allowed for steroid entry, receptor charging and transit to the nucleus. Two distinct phases were observed to characterize nuclear receptor localization. In the first phase after hormone exposure, estrogen receptor progressively accumulated in the nucleus; afterwards, estrogen receptor was progressively lost from the nucleus but could not be detected in other subcellular compartments in a form still binding hormone. Since high cell viability was maintained during these manipulations, loss of nuclear receptor was not due to cell damage during in vitro incubation. These studies suggest that this decline in nuclear receptor level after hormone interaction, which is known to occur in vivo, may be a normal event during estrogen interaction with target cells.  相似文献   

8.
9.
Chemokines play a vital role in recruiting various cell types in the process of tissue repair. Radiation, a major therapeutic modality in cancer treatment, has been described to induce inflammatory response that might lead to the expression of several chemokines. In the present study, we investigated the mechanism of monocyte chemoattractant protein-1 (MCP-1) induction by radiation in meningioma cell lines and the paracrine effect on human microvascular endothelial cells (HMEC). After radiation, meningioma cell lines (IOMM Lee and SF-3061) showed an increased expression of MCP-1. In addition, irradiated meningioma cancer cell conditioned medium (CM) showed an increased ability to attract HMEC and to stimulate MCP-1-induced protein (MCPIP), VEGF and angiogenin expression in HMEC. This chemotactic activity and angiogenic stimulator effect on HMEC were almost abrogated by depleting MCP-1 from the irradiated cancer cell CM. Further, inhibition of either ERK activation/expression or NF-κB nuclear translocation hindered radiation-induced MCP-1 expression in both meningioma cell lines. Further, supplementing cancer cells with exogenous ATF-uPA (with and without radiation) activated ERK phosphorylation, nuclear translocation of the NF-κB p65 sub-unit (Rel-A), and MCP-1 expression. Downregulation of uPA and uPAR, simultaneously by transfecting the cancer cells with bi-cistronic siRNA-expressing plasmid (pU) inhibited radiation-induced ERK activation, nuclear translocation of Rel-A, NF-κB DNA binding activity, and MCP-1 expression. In addition, pU-transfected cancer cells (with or without radiation) reduced radiation-induced MCP-1 and blocked the recruitment of other cell types during the inflammatory process induced by radiation both in in vitro and in vivo conditions.  相似文献   

10.
We examined by autoradiography on intact target cells the nucleocytoplasmic distribution of aldosterone-receptor complexes and the thermodependency of the nuclear translocation process. Autoradiographs (dry films) were performed on cortical collecting tubules isolated by microdissection, after incubation of rabbit kidney pyramids with [3H]aldosterone (2 × 10−9M) in the presence or absence of an excess unlabelled aldosterone (× 100). Paired experiments were done at 30°C (1 h) or 4°C (2 h). In both cases, the specific labelling was exclusively nuclear. Values were higher at 30°C (14.5 ° 1.5 specific silver grains per 100 μ2) than at 4°C (5.4 ± 0.6), with no concommitant cytoplasmic labelling (4°C:0.7 ± 0.3; 30°C: − 0.04 ± 0.6). At 30°C, addition of unlabelled spirolactone (× 200) prevented the observed autoradiographic nuclear accumulation of aldosterone-receptor complexes, suggesting that cytoplasmic binding preceded the nuclear entry. The results suggest that, in intact cells, almost all aldosterone receptor complexes accumulate in nuclei, and that this process does not depend on temperature. In parallel biochemical binding series we found the classical distribution of aldosterone receptor complexes both in cytoplasm and nuclei, and the classical thermodependency of nuclear translocation. The present autoradiographic results, together with similar observations reported for sex steroids (Martin P.M. and Sheridan P. J., J. steroid Biochem.16 (1982) 215–229), question the classical model of thermodependent nuclear translocation, based on biochemical experiments.  相似文献   

11.
CYP1B1 has been implicated in primary congenital glaucoma with autosomal recessive mode of inheritance. Mutations in CYP1B1 have also been reported in primary open angle glaucoma (POAG) cases and suggested to act as a modifier of the disease along with Myocilin (MYOC). Earlier reports suggest that over-expression of myocilin leads to POAG pathogenesis. Taken together, we propose a functional interaction between CYP1B1 and myocilin where 17β estradiol acts as a mediator. Therefore, we hypothesize that 17β estradiol can induce MYOC expression through the putative estrogen responsive elements (EREs) located in its promoter and CYP1B1 could manipulate MYOC expression by metabolizing 17β estradiol to 4-hydroxy estradiol, thus preventing it from binding to MYOC promoter. Hence any mutation in CYP1B1 that reduces its 17β estradiol metabolizing activity might lead to MYOC upregulation, which in turn might play a role in glaucoma pathogenesis. It was observed that 17β estradiol is present in Human Trabecular Meshwork cells (HTM) and Retinal Pigment Epithelial cells (RPE) by immunoflouresence and ELISA. Also, the expression of enzymes related to estrogen biosynthesis pathway was observed in both cell lines by RT-PCR. Subsequent evaluation of the EREs in the MYOC promoter by luciferase assay, with dose and time dependent treatment of 17β estradiol, showed that the EREs are indeed active. This observation was further validated by direct binding of estrogen receptors (ER) on EREs in MYOC promoter and subsequent upregulation in MYOC level in HTM cells on 17β estradiol treatment. Interestingly, CYP1B1 mutants with less than 10% enzymatic activity were found to increase the level of endogenous myocilin in HTM cells. Thus the experimental observations are consistent with our proposed hypothesis that mutant CYP1B1, lacking the 17β estradiol metabolizing activity, can cause MYOC upregulation, which might have a potential implication in glaucoma pathogenesis.  相似文献   

12.
S A Tonetta  J J Ireland 《Steroids》1983,42(4):427-440
Nuclear and cytoplasmic binding sites for estradiol (E2-17 beta) in granulosa cells of immature rats were characterized. These binding sites for estrogen were high affinity, low capacity with an affinity constant (Kd) of 1.9 X 10(-10)M (binding capacity, Ro = 80 pM) for nuclear sites and a Kd = 3.5 X 10(-10) M (Ro = 45 pM) for cytosol sites. Binding was specific for biologically active estrogens. The estrogen receptor in granulosa cells is a protein and heat-labile as treatment with protease or pre-incubation at 37 degrees C for 1 h significantly diminished binding. RNase and DNase had no effect on estrogen binding. Sedimentation coefficients for nuclear and cytosol binding components were 5S and 8S respectively, similar to values obtained with uteri. Finally, translocation was demonstrated after a s.c. injection of E2-17 beta. Forty-five minutes post-injection, cytosol binding sites for estradiol were depleted concomitant with accumulation of nuclear binding sites. We concluded that granulosa cells of immature rats have binding sites specific for estradiol which have characteristics similar to the classical estrogen receptor in uteri.  相似文献   

13.
The activation of Nuclear Factor, Erythroid 2 Like 2 – Kelch Like ECH Associated Protein 1 (NRF2-KEAP1) signaling pathway plays a critical dual role by either protecting or promoting the carcinogenesis process. However, its activation or nuclear translocation during hepatocellular carcinoma (HCC) progression has not been addressed yet. This study characterizes the subcellular localization of both NRF2 and KEAP1 during diethylnitrosamine-induced hepatocarcinogenesis in the rat. NRF2-KEAP1 pathway was continuously activated along with the increased expression of its target genes, namely Nqo1, Hmox1, Gclc, and Ptgr1. Similarly, the nuclear translocation of NRF2, MAF, and KEAP1 increased in HCC cells from weeks 12 to 22 during HCC progression. Likewise, colocalization of NRF2 with KEAP1 was higher in the cell nuclei of HCC neoplastic nodules than in surrounding cells. Moreover, immunofluorescence analyses revealed that the interaction of KEAP1 with filamentous Actin was disrupted in HCC cells. This disruption may be contributing to the release and nuclear translocation of NRF2 since the cortical actin cytoskeleton serves as anchoring of KEAP1. In conclusion, this evidence indicates that NRF2 is progressively activated and promotes the progression of experimental HCC.  相似文献   

14.
YTH domain family 2 (YTHDF2) is an N6-methyladenosine (m6A) binding protein promoting mRNA degradation in various biological processes. Despite its essential roles, the role of YTHDF2 in determining cell fates has not been fully elucidated. Notch signaling plays a vital role in determining cell fates, such as proliferation, differentiation, and apoptosis. We investigated the effect of YTHDF2 on Notch signaling. Our results show that YTHDF2 inhibits Notch signaling by downregulating the Notch1, HES1, and HES5 mRNA levels. Analyzing YTHDF2 deletion mutants indicates that the YTH domain is critical in regulating the Notch signal by directly binding m6A of Notch1 mRNA. Recently, YTHDF2 nuclear translocation was reported under heat shock conditions, but its physiological function is unknown. In our study, the YTH domain is required for YTHDF2 nuclear translocation. In addition, under heat shock stress, the Notch signal was significantly restored due to the increased expression of the Notch1 targets. These results suggest that YTHDF2 in the cytoplasm may act as an intrinsic suppressor in Notch signaling by promoting Notch1 mRNA degradation under normal cellular conditions. Conversely, upon the extracellular stress such as heat shock, YTHDF2 nuclear translocation resulting in reduced Notch1 mRNA decay may contribute to the increasing of Notch intracellular domain (NICD) regulating the survival-related target genes.  相似文献   

15.
16.
We have previously shown that NF-κB nuclear translocation can be observed upon human immunodeficiency virus type 1 (HIV-1) binding to cells expressing the wild-type CD4 molecule, but not in cells expressing a truncated form of CD4 that lacks the cytoplasmic domain (M. Benkirane, K.-T. Jeang, and C. Devaux, EMBO J. 13:5559–5569, 1994). This result indicated that the signaling cascade which controls HIV-1-induced NF-κB activation requires the integrity of the CD4 cytoplasmic tail and suggested the involvement of a second protein that binds to this portion of the molecule. Here we investigate the putative role of p56lck as a possible cellular intermediate in this signal transduction pathway. Using human cervical carcinoma HeLa cells stably expressing CD4, p56lck, or both molecules, we provide direct evidence that expression of CD4 and p56lck is required for HIV-1-induced NF-κB translocation. Moreover, the fact that HIV-1 stimulation did not induce nuclear translocation of NF-κB in cells expressing a mutant form of CD4 at position 420 (C420A) and the wild-type p56lck indicates the requirement for a functional CD4-p56lck complex.  相似文献   

17.
18.
Colicin A enters Escherichia coli cells through interaction with endogenous TolA and TolB proteins. In vitro, binding of the colicin A translocation domain to TolA leads to unfolding of TolA. Through NMR studies of the colicin A translocation domain and polypeptides representing the individual TolA and TolB binding epitopes of colicin A we question if the unfolding of TolA induced by colicin A is likely to be physiologically relevant. The NMR data further reveals that the colicin A binding site on TolA is different from that for colicin N which explains why there is a difference in colicin toxicity for E. coli carrying a TolA-III homologue from Yersina enterocolitica in place of its own TolA-III.

Structured summary

MINT-7888512: TolA (uniprotkb:P19934) and Col-A (uniprotkb:P04480) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888526: TolA (uniprotkb:P19934) and TolB (uniprotkb:P0A857) bind (MI:0407) by nuclear magnetic resonance (MI:0077)MINT-7888999: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by molecular sieving (MI:0071)MINT-7888982: TolA (uniprotkb:P19934), TolB (uniprotkb:P0A855) and Col-A (uniprotkb:P04480) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

19.
In target tissues for estrogen, including breast cancer cells, the synthesis of progesterone receptors (PRs) is controlled by estradiol acting through estrogen receptors (ERs). We describe studies with T47D human breast cancer cells, whose PRs are not regulated by estradiol, though present in extraordinary amounts (300,000 sites per cell). These cells have no ERs sedimenting at 8S on sucrose density gradients, and no unfilled cytoplasmic or nuclear ERs; some apparently hormone-filled nuclear sites, with KD ? 0.7 nM, can be demonstrated by exchange. The nuclear ER sites are not processed after estradiol treatment. Nafoxidine, however, doubles nuclear estrogen binding in 6 hr, in a cycloheximide-insensitive step that may represent a reversal of processing. T47D cells are profoundly resistant to estrogens and antiestrogens; estradiol does not stimulate PRs, and nafoxidine concentrations that are cytotoxic to ER-positive cells have no effect on cell growth or on PR levels. Yet the PRs are normal by several criteria, and they can be stoichiometrically translocated to, and extracted from, nuclei in the first 3 min after progesterone addition. If progesterone treatment exceeds 10 min, rapid nuclear turnover prevents quantitative PR recovery. Cytoplasmic PRs are replenished in 10 to 24 hr, and this cycloheximide-sensitive step is also estrogen- and nafoxidine-resistant. However, despite their insensitivity to estradiol or antiestrogen, PRs are not constitutively synthesized; 5-bromodeoxyuridine and sodium butyrate can selectively inhibit PR production. Thus, since PRs retain some characteristics of inducible proteins, the persistent nuclear estrogen-binding sites may be stimulating PRs continuously, even in the absence of exogenous estradiol.  相似文献   

20.
Following the observation that the nucleoside pre-treatment reduced the radiation-induced dominant lethality in the post-meiotic germ cells, similar experiments were conducted using the same treatment conditions to study the influence of the nucleoside(s) pre-treatment on the radiation-induced (1.2 kR) incidence of sex-linked recessive lethals and translocation events in the post-meiotic male germ cells of 1-day-old D. melanogaster. The nucleoside pre-treatment reduced the translocation frequency (not statistically significant) and the lethal mutation frequency (statistically significant) in the post-meiotic cells (pre-injection DNA synthesis cells) especially in the mature sperms sampled in brood a (br a). The radio-protective effect of the nucleosides on the mature sperms was confirmed using 7-day-old virgin males and different radiation doses (2.4 kR and 3.6 kR).The frequency of lethal mutation was lowest when irradiation was preceded by the injection of an equimolar solution of thymidine (TdR), deoxyadenosine (AdR), deoxycytidine (CdR) and deoxyguanosine (GdR). However, when the nucleosides were injected after irradiation (within 10–30 min) there was no change in the yield of radiation-induced lethals.The possible mechanisms for the radioprotective action of the nucleosides in the post-meiotic germ cells such as (a) “protection” by a radiochemical action of nucleosides competing for short-lived radicals that might otherwise cause damage to DNA and (b) biochemical-physiological mechanisms such as metabolic events increasing the radioresistance of the cells, providing excess energy for repair or favoring and partaking in the DNA repair synthesis were discussed. Further studies were felt necessary to elucidate this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号