首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of the extensive use of methyl tert‐butyl ether (MTBE) as an additive to increase the octane quality of gasoline, the environmental pollution by this compound has increased in recent decades. Environmental release of MTBE may lead to its entry to the blood stream through inhalation or drinking of contaminated water, and its interactions with biological molecules such as proteins. The present study was proposed to comparatively investigate the interactions of MTBE with hemoglobin (Hb) from diabetic and nondiabetic individuals using various spectroscopic methods including UV‐visible, fluorescence, chemiluminescence, and circular dichroism. These results demonstrated the effects of MTBE on heme degradation of Hb and the reaction of these degradation products with water generating reactive oxygen species. Interaction of Hb with MTBE enhanced its aggregation rate and decreased lag time, indicating the antichaperone activity of MTBE upon interaction with Hb. Furthermore, the diabetic Hb showed more severe effects of MTBE, including heme degradation, reactive oxygen species production, unfolding, and antichaperone behavior than the nondiabetic Hb. The results from molecular docking suggested that the special interaction site of MTBE in the vicinity of Hb heme group is responsible for heme degradation.  相似文献   

2.
The interaction between human hemoglobin (Hb) and oxali-palladium was studied using different spectroscopic methods of UV–vis, fluorescence, circular dichroism (CD), and chemiluminescence at two temperatures of 25 and 37°C. The experimental results showed that both dynamic and static quenching is occurred simultaneously when oxali-palladium quenches the fluorescence of Hb. According to the fluorescence quenching method, the binding site number, apparent binding constant, and corresponding thermodynamic parameters were measured at two temperatures. The values of ΔH°, ΔS°, and ΔG° indicate that process of the formation of oxali-palladium–Hb complex is a spontaneous interaction procedure in which electrostatic interaction plays a major role. In addition, UV–vis and CD results showed that the addition of oxali-palladium changes the conformation of Hb. To evaluate the functional changes of Hb via destruction of the heme structure, fluorescence studies were performed. The results demonstrated that two fluorescent heme degradation products are found during the interaction of oxali-palladium with Hb. Also, the amount of hydrogen peroxide produced in the solution of Hb due to the interaction of oxali-palladium with Hb using chemiluminescence method indicated heme degradation in the protein is occurred. Structural and functional changes induced in Hb via heme degradation are considered as side effects of this synthesized anticancer drug.  相似文献   

3.
Chemically modified human or bovine hemoglobins (Hb) have been developed as oxygen-carrying therapeutics and are currently under clinical evaluation. Oxidative processes, which are in many cases enhanced when modifications are introduced that lower the oxygen affinity, can limit the safety of these proteins. We have carried out a systematic evaluation of two modified human Hbs (O-R-polyHbA(0) and DBBF-Hb) and one bovine Hb (polyHbBv). We have both measured the oxidative products present in the Hb preparations and followed the oxidative reactions during 37 degrees C incubations. Autoxidation, the primary oxidative reaction which initiates the oxidative cascade, is highly correlated with P(50) (R = 0.987; p < 0.002). However, when the results for the other oxidative processes are compared, two different classes of oxidative reactions are identified. The formation of oxyferrylHb, like the rate of autoxidation, increases for all modified Hbs. However, the subsequent reactions, which lead to heme damage and eventually heme degradation, are enhanced for the modified human Hbs but are actually suppressed for bovine-modified Hbs. The rhombic heme measured by electron paramagnetic resonance, which is the initial step that causes irreversible damage to the heme, is found to be a reliable measure of the stability of ferrylHb and has the tendency to produce degradation products. DBBF-Hb, a Hb-based oxygen carrier (HBOC) for which toxic side effects have been well documented, has the highest level of rhombic heme (41-fold greater than for HbA(0)), even though its rate of autoxidation is relatively low. These findings establish the importance of these secondary oxidative reactions over autoxidation in evaluating the toxicity of HBOCs.  相似文献   

4.
Nagababu E  Rifkind JM 《Biochemistry》2000,39(40):12503-12511
The reaction of Fe(II) hemoglobin (Hb) but not Fe(III) hemoglobin (metHb) with hydrogen peroxide results in degradation of the heme moiety. The observation that heme degradation was inhibited by compounds, which react with ferrylHb such as sodium sulfide, and peroxidase substrates (ABTS and o-dianisidine), demonstrates that ferrylHb formation is required for heme degradation. A reaction involving hydrogen peroxide and ferrylHb was demonstrated by the finding that heme degradation was inihibited by the addition of catalase which removed hydrogen peroxide even after the maximal level of ferrylHb was reached. The reaction of hydrogen peroxide with ferrylHb to produce heme degradation products was shown by electron paramagnetic resonance to involve the one-electron oxidation of hydrogen peroxide to the oxygen free radical, superoxide. The inhibition by sodium sulfide of both superoxide production and the formation of fluorescent heme degradation products links superoxide production with heme degradation. The inability to produce heme degradation products by the reaction of metHb with hydrogen peroxide was explained by the fact that hydrogen peroxide reacting with oxoferrylHb undergoes a two-electron oxidation, producing oxygen instead of superoxide. This reaction does not produce heme degradation, but is responsible for the catalytic removal of hydrogen peroxide. The rapid consumption of hydrogen peroxide as a result of the metHb formed as an intermediate during the reaction of reduced hemoglobin with hydrogen peroxide was shown to limit the extent of heme degradation.  相似文献   

5.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.  相似文献   

6.
We have recently reported that expression of an unidentified heme protein is enhanced in a nitrifying activated sludge community under low (0.1 mg O2/L) dissolved oxygen (DO) conditions. A preliminary assessment suggested it may be a type of hemoglobin (Hb) or a lesser-known component of the energy-transducing pathways of ammonia-oxidizing bacteria (AOB) (particularly an oxidase or peroxidase). Here, additional work was done to characterize this protein. Due to the unfeasibility of identifying the protein using gene-based methods, our approach was to carry out assays that target the activity and function of the protein, its location in the cell, and determination of the organisms that express it. Using CO-difference spectra, it was shown that the protein is expressed by AOB preferentially in the cytoplasm, while the pyridine hemochromogen method demonstrated that it has heme c as its prosthetic group. Peroxidase and oxidase assays were carried out on the soluble fraction of the low DO-grown cells; neither the peroxidase nor oxidase activities matched those of the CO-binding heme protein detected. Even though it is not possible to conclusively identify the protein detected as a Hb, all other known possibilities have been ruled out. Further work is needed to verify the identity of the heme protein as a Hb and to determine its type and biochemical role under low oxygen conditions.  相似文献   

7.
8.
In Hb Warsaw Val replaces the Phe normally present at the heme contact position beta 42 (CD1). This variant is unstable, and it readily undergoes methemoglobin formation. In DEAE-cellulose chromatography, the variant hemoglobin co-eluted with Hb A; a partially heme-depleted fraction of the variant, representing 5-6% of the total hemoglobin, eluted separately and in pure form. The heme replete form of Hb Warsaw exhibited decreased oxygen affinity with a normal Bohr effect and normal cooperativity and interaction with 2,3-diphosphoglycerate (DPG). The heme-depleted Hb Warsaw had a higher oxygen affinity than that of Hb A, decreased cooperativity and 2,3-DPG interaction, and a very low alkaline Bohr effect. Gel filtration of the heme-depleted form showed it to exist entirely as alpha beta dimers. Globin chain synthesis by Hb Warsaw-containing reticulocytes followed a balanced alpha/beta ratio. In short-term synthesis experiments, a major portion of incorporated radiolabeled L-leucine was recovered from the dimeric, heme-depleted Hb Warsaw fraction, suggesting that subunit association precedes the incorporation of heme into the beta subunits in the post-synthetic assembly of this hemoglobin. Structural analysis of deoxyhemoglobin containing roughly equal proportions of normal and variant beta chains showed that the replacement leaves a cavity next to the heme that is large enough to hold a water molecule, which may account for the instability of Hb Warsaw. The heme and the pyrrol nearest to ValCD1 tilt into the cavity. The resulting increase in the tilt of the proximal histidine relative to the heme plane, coupled with a possible stretching of the Fe-N epsilon bond may account for the low oxygen affinity.  相似文献   

9.
Carbon monoxide-driven reduction of ferric heme and heme proteins   总被引:4,自引:0,他引:4  
Oxidized cytochrome c oxidase in a carbon monoxide atmosphere slowly becomes reduced as shown by changes in its visible spectra and its reactivity toward oxygen. The "auto-reduction" of cytochrome c oxidase by this procedure has been used to prepare mixed valence hybrids. We have found that this process is a general phenomenon for oxygen-binding heme proteins, and even for isolated hemin in basic aqueous solution. This reductive reaction may have physiological significance. It also explains why oxygen-binding heme proteins become oxidized much more slowly and appear to be more stable when they are kept under a CO atmosphere. Oxidized alpha and beta chains of human hemoglobin become reduced under CO much more slowly than does cytochrome c oxidase, where the CO-binding heme is coupled with another electron accepting metal center. By observing the reaction in both the forward and reverse direction, we have concluded that the heme is reduced by an equivalent of the water-gas shift reaction (CO + H2O----CO2 + 2e- + 2H+). The reaction does not require molecular oxygen. However, when the CO-driven reduction of cytochrome c oxidase occurs in the presence of oxygen, there is a competition between CO and oxygen for the reduced heme and copper of cytochrome alpha 3. Under certain conditions when both CO and oxygen are present, a peroxide adduct derived from oxygen reduction can be observed. This "607 nm complex," described in 1981 by Nicholls and Chanady (Nicholls, P., and Chanady, G. (1981) Biochim. Biophys. Acta 634, 256-265), forms and decays with kinetics in accord with the rate constants for CO dissociation, oxygen association and reduction, and dissociation of the peroxide adduct. In the absence of oxygen, if a mixture of cytochrome c and cytochrome c oxidase is incubated under a CO atmosphere, auto-reduction of the cytochrome c as well as of the cytochrome c oxidase occurs. By our proposed mechanism this involves a redistribution of electrons from cytochrome alpha 3 to cytochrome alpha and cytochrome c.  相似文献   

10.
Nanoparticles (NPs) due to their small size and high surface area induce remarkable adverse effects on the biological systems. However, the exact mechanism by which NPs interacted with biological system and induce their adverse effects is still an enigma. Herein, the interaction of zero valent iron NPs (ZVFe NPs) with human hemoglobin (Hb) was evaluated using a variety of techniques including circular dichroism, fluorescence, and UV–visible (UV–vis) spectroscopy methods. Also, the cytotoxicity of ZVFe NPs on the human lymphocyte cell line as a model of blood system cell line was investigated by reactive oxygen species (ROS), caspase-9, and caspase-3 activities assays. It was revealed that ZVFe NP interaction resulted in heme displacement and degradation and induction of protein cabonylation. It was also shown that ZVFe NPs impaired the complexity of lymphocyte cells through ROS generation and apoptotic pathway. Together, these data suggest that NPs influence the biological system and induce adverse effects through ROS generation.  相似文献   

11.
A putative hemoglobin (Hb) gene, related to those previously characterized in the green alga Chlamydomonas eugametos, the ciliated protozoan Paramecium caudatum, the cyanobacterium Nostoc commune and the bacterium Mycobacterium tuberculosis, was recently discovered in the complete genome sequence of the cyanobacterium Synechocystis PCC 6803. In this paper, we report the purification of Synechocystis Hb and describe some of its salient biochemical and spectroscopic properties. We show that the recombinant protein contains Fe-protoporphyrin IX and forms a very stable complex with oxygen. The oxygen dissociation rate measured, 0.011 s(-1), is among the smallest known and is four orders of magnitude smaller than the rate measured for N. commune Hb, which suggests functional differences between these Hbs. Optical and resonance Raman spectroscopic study of the structure of the heme pocket of Synechocystis Hb reveals that the heme is 6-coordinate and low-spin in both ferric and ferrous forms in the pH range 5.5-10.5. We present evidence that His46, predicted to occupy the helical position E10 based on amino-acid sequence comparison, is involved in the formation of the ferric and ferrous 6-coordinate low-spin structures. The analysis of the His46Ala mutant shows that the ferrous form is 5-coordinate and high-spin and the ferric form contains a 6-coordinate high-spin component in which the sixth ligand is most probably a water molecule. We conclude that the heme pocket of the wild type Synechocystis Hb has a unique structure that requires a histidine residue at the E10 position for the formation of its native structure.  相似文献   

12.
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.  相似文献   

13.
The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin approximately 50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian alpha and beta chains. The larger IleE11 side chain sterically hinders bound O(2) and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in alpha subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near beta CD3 in the perch Hb (approximately 8 A) compared with trout IV Hb (approximately 6 A) which in turn is significantly higher than that in bovine Hb (approximately 4 A) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.  相似文献   

14.
This study examines the structural and functional effects of amino acid substitutions in the distal side of both the alpha- and beta-chain heme pockets of human normal adult hemoglobin (Hb A). Using our Escherichia coli expression system, we have constructed four recombinant hemoglobins: rHb(alphaL29F), rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W). The alpha29 and beta28 residues are located in the B10 helix of the alpha- and beta-chains of Hb A, respectively. The B10 helix is significant because of its proximity to the ligand-binding site. Previous work showed the ability of the L29F mutation to inhibit oxidation. rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) exhibit very low oxygen affinity and reduced cooperativity compared to those of Hb A, while the previously studied rHb(alphaL29F) exhibits high oxygen affinity. Proton nuclear magnetic resonance spectroscopy indicates that these mutations in the B10 helix do not significantly perturb the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces, while as expected, the tertiary structures near the heme pockets are affected. Experiments in which visible spectrophotometry was utilized reveal that rHb(alphaL29F) has equivalent or slower rates of autoxidation and azide-induced oxidation than does Hb A, while rHb(alphaL29W), rHb(betaL28F), and rHb(betaL28W) have increased rates. Bimolecular rate constants for NO-induced oxidation have been determined using a stopped-flow apparatus. These findings indicate that amino acid residues in the B10 helix of the alpha- and beta-chains can play different roles in regulating the functional properties and stability of the hemoglobin molecule. These results may provide new insights for designing a new generation of hemoglobin-based oxygen carriers.  相似文献   

15.
We report the ligand dependence of the conformer distribution in the distal heme pocket of Ascaris suum hemoglobin (Hb) studied by resonance Raman spectroscopy. The heme-bound CO is used as a spectroscopic antenna to probe the original distribution of conformers in the dioxygen derivative of Ascaris Hb, by utilizing sol-gel encapsulation. The first step is to encapsulate the dioxygen derivative in the porous sol-gel and let the gel age, thus trapping the equilibrium conformational distribution of Ascaris dioxygen Hb. In the second step, the dioxygen ligand is replaced by CO. The sol-gel environment impedes any large scale movements, drastically slowing down the conformational relaxation triggered by the ligation change, essentially "locking in" the initial quaternary and even tertiary structure of the protein. Studying the Fe-CO frequencies of the latter sample allows evaluation of the distribution of the distal heme pocket conformers that was originally associated with the dioxygen derivative. Extending the study to the Ascaris mutants allows for examination of the effect of specific residues in the distal pocket on the conformational distribution. The choice of mutants was largely based on the anticipated variation in hydrogen bonding patterns. The results show that the sol-gel encapsulation can slow or prevent re-equilibration within the distal heme pocket of Ascaris Hb and that the distribution of distal heme pocket conformers for the CO derivative of Ascaris Hb in the sol-gel is highly dependent on the history of the sample. Additionally, we report a detailed study of the CO complex of the mutants in solution for assignment of the various heme pocket conformers, and we present a comparison of the sol-gel data with solution data. The results support a picture in which the dioxygen derivative biases the population strongly toward a tightly packed configuration that favors the network of strong hydrogen bonding interactions, and suggest that Ascaris Hb is uniquely designed for dioxygen capture.  相似文献   

16.
Unlike pathogenic fungi, the budding yeast Saccharomyces cerevisiae is not efficient at using heme as a nutritional source of iron. Here we report that for this yeast, heme uptake is induced under conditions of heme starvation. Heme synthesis requires oxygen, and yeast grown anaerobically exhibited an increased uptake of hemin. Similarly, a strain lacking aminolevulinate synthase exhibited a sixfold increase in hemin uptake when grown without 2-aminolevulinic acid. We used microarray analysis of cells grown under reduced oxygen tension or reduced intracellular heme conditions to identify candidate genes involved in heme uptake. Surprisingly, overexpression of PUG1 (protoporphyrin uptake gene 1) resulted in reduced utilization of exogenous heme by a heme-deficient strain and, conversely, increased the utilization of protoporphyrin IX. Pug1p was localized to the plasma membrane by indirect immunofluorescence and subcellular fractionation. Strains overexpressing PUG1 exhibited decreased accumulation of [(55)Fe]hemin but increased accumulation of protoporphyrin IX compared to the wild-type strain. To measure the effect of PUG1 overexpression on intracellular heme pools, we used a CYC1-lacZ reporter, which is activated in the presence of heme, and we monitored the activity of a heme-containing metalloreductase, Fre1p, expressed from a constitutive promoter. The data from these experiments were consistent with a role for Pug1p in inducible protoporphyrin IX influx and heme efflux.  相似文献   

17.
He P  Li M  Hu N 《Biopolymers》2005,79(6):310-323
With the isoelectric point at pH 7.4, hemoglobin (Hb) has net positive surface charges at pH 5.0 and overall negative charges at pH 9.0, and is essentially neutral at pH 7.0. The fifth-generation poly(propyleneimine) (PPI) dendrimer is usually positively charged in aqueous solution. The {PPI/Hb}n films under different pH conditions have been successfully fabricated on various solid surfaces by the layer-by-layer assembly technique, and the growth of films was monitored by ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV). Not only was the negatively charged Hb at pH 9.0 alternately adsorbed with positively charged PPI onto solid substrates by electrostatic attraction between them, but the positively charged Hb at pH 5.0 was also successfully assembled with like charged PPI into layer-by-layer {PPI/Hb(pH 5.0)}n films. For the latter, the localized electrostatic interaction or the charge reversal of proteins on PPI surface may be the main driving force. For {PPI/Hb(pH 7.0)}n films, however, the hydrophobic/hydrophilic interaction may play a more important role in the assembly, making the amount of adsorbed Hb even less than that of {PPI/Hb(pH 5.0)}n films. For comparison, negatively charged catalase (Cat) at pH 8.0 was used to assemble layer-by-layer films with positive PPI, but {PPI/Cat}n films showed quite different properties from {PPI/Hb}n films. UV-vis and infrared (IR) spectroscopy, QCM, ellipsometry, and voltammetry were utilized to characterize the {PPI/protein}n films. The results suggest that the proteins in the multilayer films retain their near-native structure and display good voltammetric response for heme Fe(III)/Fe(II) redox couples at underlying pyrolytic graphite (PG) electrodes. Electrocatalysis of oxygen and hydrogen peroxide based on direct electrochemistry of heme proteins at {PPI/protein}n film electrodes was also demonstrated.  相似文献   

18.
Huang Z  Chen K  Xu T  Zhang J  Li Y  Li W  Agarwal AK  Clark AM  Phillips JD  Pan X 《Eukaryotic cell》2011,10(11):1536-1544
The azaoxoaporphine alkaloid sampangine exhibits strong antiproliferation activity in various organisms. Previous studies suggested that it somehow affects heme metabolism and stimulates production of reactive oxygen species (ROS). In this study, we show that inhibition of heme biosynthesis is the primary mechanism of action by sampangine and that increases in the levels of reactive oxygen species are secondary to heme deficiency. We directly demonstrate that sampangine inhibits heme synthesis in the yeast Saccharomyces cerevisiae. It also causes accumulation of uroporphyrinogen and its decarboxylated derivatives, intermediate products of the heme biosynthesis pathway. Our results also suggest that sampangine likely works through an unusual mechanism-by hyperactivating uroporhyrinogen III synthase-to inhibit heme biosynthesis. We also show that the inhibitory effect of sampangine on heme synthesis is conserved in human cells. This study also reveals a surprising essential role for the interaction between the mitochondrial ATP synthase and the electron transport chain.  相似文献   

19.
20.
Hypochlorous acid (HOCl) is generated by myeloperoxidase using chloride and hydrogen peroxide as substrates. HOCl and its conjugate base (OCl) bind to the heme moiety of hemoglobin (Hb) and generate a transient ferric species whose formation and decay kinetics indicate it can participate in protein aggregation and heme destruction along with subsequent free iron release. The oxidation of the Hb heme moiety by OCl was accompanied by marked heme destruction as judged by the decrease in and subsequent flattening of the Soret absorbance peak at 405 nm. HOCl-mediated Hb heme depletion was confirmed by HPLC analysis and in-gel heme staining. Exposure of Hb to increasing concentrations of HOCl produced a number of porphyrin degradation products resulting from oxidative cleavage of one or more of the carbon-methene bridges of the tetrapyrrole ring, as identified by their characteristic HPLC fluorescence and LC-MS. A nonreducing denaturing SDS-PAGE showed several degrees of protein aggregation. Similarly, porphyrin degradation products were identified after exposure of red blood cells to increasing concentrations of HOCl, indicating biological relevance of this finding. This work provides a direct link between Hb heme destruction and subsequent free iron accumulation, as occurs under inflammatory conditions where HOCl is formed in substantial amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号