首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two molecular forms of adrenal norepinephrine N-methyltransferase have been isolated from the nonparticulate fraction of rabbit adrenal glands by use of hydroxylapatite chromatography. The two forms remain distinct on rechromatography. The results obtained by disc gel electrophoresis suggest that the two forms are charge isozymes.The molecular weight of the isozymes was estimated to be 37,000 on the basis of chromatography of Sephadex G-200. The two isozymes are distinguishable on the basis of their steady-state kinetic parameters, particularly on the basis of the substrate inhibition constants for l-norepinephrine and S-adenosylmethionine.  相似文献   

2.
3.
Liu KD  Huang AH 《Plant physiology》1977,59(5):777-782
The total activity of aspartate-α-ketoglutarate transaminase in the cotyledons of cucumber (Cucumis sativus L.) seeds increased 17-fold during the first 2 days of germination in darkness and then declined gradually to 20% of the peak activity after 10 days. Exposure of the seedlings to light at day 3 accelerated the decline. The enzyme in the cotyledon extracts from seedlings at various ages was resolved into six distinct isozymes by starch gel electrophoresis. Isozymes 1 and 2 were glyoxysomal isozymes with different developmental patterns. Isozyme 1 followed the developmental pattern of the total enzyme activity in darkness, and was rapidly eliminated upon illumination. Isozyme 2 increased in activity to a peak at day 2 and declined rapidly thereafter, and disappeared completely at day 6; this developmental pattern was independent of light. No major difference in the optimal pH for activity, substrate specificity, and reversibility was observed between isozymes 1 and 2. The combined developmental pattern of isozymes 1 and 2 during germination correlated with that of the glyoxysomes. Isozyme 3 was located in the cytosol and its developmental pattern followed that of the total activity. Isozymes 4,5, and 6 were plastid isozymes and appeared only after 2 days of germination. Unlike many other chloroplast enzymes, the appearance of the chloroplast transaminase isozymes was under temporal control and was independent of illumination. No enzyme activity was detected in isolated mitochondria. The findings illustrate a complicated cellular control system for the appearance of various organelle-specific transaminase isozymes and thus the amino acid metabolism during germination.  相似文献   

4.
5′-Nucleotidase (5′-NT, E.C. 3.1.3.5) of cultured human and rodent cells was rendered soluble using the zwitterionic detergent Zwittergent 314. Optimal activity of 5′-NT was obtained when sonicated cells were incubated in solutions containing 0.75% (w/v) Zwittergent. A method was developed for the determination of the activity of 5′-NT in which the unutilized substrate, [14C]-AMP. was precipitated with lanthanum chloride and the soluble [14C]-adenosine was measured by scintillation counting. 5′-NT isozymes were separated using agarose gel electrophoresis and isoelectric focusing in polyacrylamide gel. The zones of enzyme activity were established by precipitation of unutilized [14C]-AMP with LaCl3, removal of soluble [14C]-adenosine by washing gels in water, and autoradiography. The zones of 5′-NT appeared as clear zones on darkened X-ray film. When analyzed by agarose gel electrophoresis, fibroblasts derived from human skin and rat liver produced a single zone of 5′-NT activity. The 5′-NT isozyme of rat cells migrated faster than that of human cells and was easy to distinguish. The presence of detergent in the sample and in the gel enhanced enzymatic activity and improved the separation of the isozymes. Isoelectric focusing resolved 5′-NT of human fibroblasts into two molecular forms. one of which focused in the region of pH 6 and the other at pH 5.  相似文献   

5.
Precursor forms of the isozymes of aspartate aminotransferase from pig heart were synthesized in vitro and purified by binding to specific antibodies. Analysis by sodium dodecylsulfate polyacrylamide gel electrophoresis showed that the precursor of the cytosolic enzyme has a similar molecular weight to that of the mature protein whereas the precursor of the mitochondrial isozyme has a molecular weight greater than that of the corresponding mature protein (ΔMW ? 2500). Preliminary sequence studies seem to suggest that the precursor of the mitochondrial isozyme has an extra N-terminal peptide sequence while that of the cytosolic protein has only an extra N-terminal methionine residue.  相似文献   

6.
Phenylalanine hydroxylase, the enzyme that catalyzes the irreversible hydroxylation of phenylalanine to tyrosine, was purified from rat kidney with the use of phenyl-Sepharose, DEAE-Sephacel, and gel permeation high pressure liquid chromatography. Our most highly purified fractions had a specific activity in the presence of 6-methyltetrahydropterin, of 1.5 mumol of tyrosine formed/min/mg of protein, which is higher than has been reported hitherto. For the rat kidney enzyme, the ratio of specific activity in the presence of 6-methyltetrahydropterin to the specific activity in the presence of tetrahydrobiopterin (BH4) is 5. By contrast, this ratio for the unactivated rat liver hydroxylase is 80. These results indicate that the kidney enzyme is in a highly activated state. The rat kidney hydroxylase could not be further activated by any of the methods that stimulate the BH4-dependent activity of the rat liver enzyme. In addition, the kidney enzyme binds to phenyl-Sepharose without prior activation with phenylalanine. The phenylalanine saturation pattern with BH4 as a cofactor is hyperbolic with substrate inhibition at greater than 0.5 mM phenylalanine, a pattern that is characteristic of the activated liver hydroxylase. The molecular weight of the rat kidney enzyme as determined by gel permeation chromatography is 110,000, suggesting that the enzyme might be an activated dimer. We conclude, therefore, that phenylalanine hydroxylases from rat kidney and liver are in different states of activation and may be regulated in different ways.  相似文献   

7.
Two forms of phosphoinositidase C have been purified from the soluble fraction of rat brain. The purification scheme included gel filtration followed by chromatography on cellulose phosphate, phenyl-Sepharose, and Mono Q. Gradient sodium dodecyl sulphate-polyacrylamide gel electrophoresis gave apparent molecular masses of 151 kDa and 147 kDa. Western blotting with monoclonal antibodies showed that the isozymes corresponded to PLC-beta-1 and PLC-gamma of bovine brain. With both enzymes phosphatidylinositol 4,5-bisphosphate was a better substrate than phosphatidylinositol at neutral pH and low calcium ion concentrations. Both enzymes produced a proportion of inositol 1:2-cyclic phosphates from each substrate, particularly at acid pH. Some GTPase activity was seen in the early stages of purification, but was separated from PLC-beta-1 and PLC-gamma on Mono Q. Purified rat brain protein kinase C phosphorylated PLC-gamma but not PLC-beta-1. Incubation with the kinase increased the activity of both enzymes however, possibly by phosphorylation of another protein in the preparations.  相似文献   

8.
Esterase-6 (EST 6; carboxylic-ester hydrolase; EC 3.1.1.1) from Drosophila melanogaster was purified to homogenity. Purified enzyme occurs as two closely moving isozymes, slow (EST 6S) and fast (EST 6F), on native polyacrylamide gel electrophoresis. Except for slight differences in their mobility, the two isozymes share similar molecular and catalytic properties. Both isozymes are glycoproteins and have an apparent molecular weight of 62,000 to 65,000 as judged by analytical gel filtration and sodium dodecyl sulfate (SDS) electrophoresis. They have identical mobility on SDS-polyacrylamide gels and an isoelectric point of 4.5. Each isozyme has a single active catalytic site as confirmed by titration with 0,0-diethyl-p-nitrophenyl phosphate (Paraoxon). We conclude that EST 6 is a monomeric enzyme. The amino acid composition of the two isozymes is very similar and both variants lack half-cystine residues. The low pI of the enzyme is due in part to a relatively high proportion of glutamic and aspartic amino acid residues. Characterization of the kinetic parameters of the isozymes using beta-naphthyl and p-nitrophenyl esters revealed no statistically significant differences in catalytic efficiency. There is, however, a suggestion that the two isozymes may differ in their substrate specificity.  相似文献   

9.
Two forms of phenylalanine:pyruvate transaminase (EC 2.6.1. aminotransferases, the exact EC number has not been assigned) termed A and B were obtained from the liver supernatant fraction of glucagon-treated rats by DEAE-Sephadex A-50 column chromatography. Each of the two forms was further purified by hydroxylapatite, Sephadex G-100 chromatography, and preparative gel electrophoresis. Both the A and B forms have been purified to homogeneity as judged by analytical and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Moreover, histidine was found to be a competitive inhibitor of phenylalanine with both purified proteins. These findings conclusively support the view that phenylalanine:pyruvate transaminase and histidine:pyruvate transaminase reactions are catalyzed by the same protein. The overall purification was 710-fold for the A form and 1200-fold for the B form. The apparent molecular weight for both A and B are 74,000 ±6000 as determined by gel filtration. Sodium dodecyl sulfate gel electrophoresis revealed that the A form has two identical subunits of molecular weight 42,000, whereas the B form has two nonidentical subunits of molecular weight 42,000 and 44,000. The amino acid composition for the A and B forms of the enzyme are different. The major differences are in glycine, alanine and leucine. The isoelectric point for A was 7.8 and for B was 7.3. However, the A and B forms of the enzyme are of immunological identity. The substrate specificity determined for both the A and B form was phenylalanine >asparagine >alanine >leucine >histidine. The Km for phenylalanine was 7.70 mm for the A form, 6.00 mm for the B form. For histidine, the Km was 13.70 mm for the A form, 12.50 mm for the B form.  相似文献   

10.
Purified rat liver phenylalanine hydroxylase is inactivated in vitro by ascorbate and thiol compounds, dithiothreitol being the most effective inhibitor, with a second order rate constant for the inactivation of 0.066 +/- 0.002 mM-1.min-1 at 20 degrees C and pH 7.2. Anaerobic conditions and catalase protected the enzyme from inactivation by dithiothreitol. This suggests that hydrogen peroxide, produced by oxidation of the thiol, is involved in the inactivation. The substrate, L-phenylalanine, also partially protected the enzyme from this inactivation. It is shown that incubation of the enzyme with dithiothreitol at aerobic conditions, followed by gel filtration, causes the release of iron from the active site. The inactivation by dithiothreitol was reversed by incubation of the iron-depleted enzyme with Fe(II).  相似文献   

11.
S Partanen 《Histochemistry》1983,77(1):99-104
A simultaneous azo-coupling method for histochemical localization of steroid acetate hydrolyzing enzyme is described. It is based on the observation that d-equilenin, a natural oestrogenic steroid hormone, forms deeply coloured insoluble reaction products with diazonium salts under reaction conditions suitable for histochemical purposes. An acetate at position 3 of d-equilenin is rapidly hydrolysed by tissue esterase and the liberated d-equilenin couples with a diazonium salt to form a coloured precipitate. Steroid acetate hydrolyzing enzyme activity was observed in various tissues of the rat; a comparison with nonspecific esterase activity using alpha-naphthyl acetate as substrate suggested that steroid acetate hydrolyzing enzyme activity represents the activity of one or several isozymes of classical nonspecific esterase. This conclusion has also been drawn previously from biochemical studies using esters of other steroids.  相似文献   

12.
A method is described for the purification from Bacteroides nodosus of five individual proteinase isozymes which could not be purified by column chromatography techniques. The isozymes were separated by horizontal slab polyacrylamide gel electrophoresis. Their exact location within the gel was determined with a fluorescein-casein substrate, and they were extracted from the gel by a simple electroelution apparatus. In a typical purification, microgram quantities of three individual isozymes were recovered free of other isozyme activities. The other two isozymes were each contaminated (<5%) with another isozyme activity. Occasionally, all the individual isozymes were recovered in pure form. The molecular weights were 78,000, 82,000, 88,000, 96,000, and 107,000.  相似文献   

13.
Evidence in support of the hypothesis of gene expression and subunit association suggested earlier for Triticum alcohol dehydrogenase has been obtained through purification and partial characterization of the enzyme from tetraploid wheat. Three isozymes of alcohol dehydrogenase were separated and purified to apparent homogeneity using streptomycin sulfate precipitation, gel filtration chromatography, and anion exchange chromatography. The isozymes are dimers with the same molecular weight (116,000 ± 2,000), but significantly different isoelectric pH values. The Michaelis constants for NAD+ and ethanol are 0.1 millimolar and 12 millimolar, respectively. The substrate specificity of the three alcohol dehydrogenase isozymes was investigated.  相似文献   

14.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

15.
A procedure for the rapid identification of glutathione S-transferase isozymes from rat liver in polyacrylamide gels is described. The isozymes are separated by electrofocusing and then identified by bathing the gels in a solution containing substrates and scanning the gels at the appropriate wavelength for the appearance of product. Increase in absorbance as a function of time delineates areas containing enzyme from artifacts within the gel. This technique should be useful for the identification of isozymes of glutathione S-transferase in other tissues and also other species. Also, the technique provides for rapid confirmation of homogeneity of the isozymes of glutathione S-transferase.  相似文献   

16.
Esterases have recurrently been implicated in insecticide resistance in Helicoverpa armigera but little is known about the underlying molecular mechanisms. We used a baculovirus system to express 14 of 30 full-length esterase genes so far identified from midgut cDNA libraries of this species. All 14 produced esterase isozymes after native PAGE and the isozymes for seven of them migrated to two regions of the gel previously associated with both organophosphate and pyrethroid resistance in various strains. Thirteen of the enzymes obtained in sufficient yield for further analysis all showed tight binding to organophosphates and low but measurable organophosphate hydrolase activity. However there was no clear difference in activity between the isozymes from regions associated with resistance and those from elsewhere in the zymogram, or between eight of the isozymes from a phylogenetic clade previously associated with resistance in proteomic and quantitative rtPCR experiments and five others not so associated. By contrast, the enzymes differed markedly in their activities against nine pyrethroid isomers and the enzymes with highest activity for the most insecticidal isomers were from regions of the gel and, in some cases, the phylogeny that had previously been associated with pyrethroid resistance. Phospholipase treatment confirmed predictions from sequence analysis that three of the isozymes were GPI anchored. This unusual feature among carboxylesterases has previously been suggested to underpin an association that some authors have noted between esterases and resistance to the Cry1Ac toxin from Bacillus thuringiensis. However these three isozymes did not migrate to the zymogram region previously associated with Cry1Ac resistance.  相似文献   

17.
The biosynthetic mechanism of α-amylase synthesis in germinating rice (Oryza sativa L. cv. Kimmazé) seeds has been studied both in vitro and in vivo. Special attention has been focused on the glycosylation of the enzyme molecule. Tunicamycin was found to inhibit glycosylation of α-amylase by 98% without significant inhibition of enzyme secretion. The inhibitory effect exerted by the antibiotic on glycosylation did not significantly alter enzyme activity.

In an in vitro system using poly-(A) RNA isolated from rice scutellum and the reticulocyte lysate translation system, a precursor form of α-amylase (precursor I) is formed. Inhibition of glycosylation by Tunicamycin allowed detection of a nonglycosylated precursor (II) of α-amylase. The molecular weight of the nonglycosylated precursor II produced in the presence of Tunicamycin was 2,900 daltons less than that of the mature form of α-amylase (44,000) produced in the absence of Tunicamycin, and 1,800 daltons less than the in vitro synthesized molecule.

The inhibition of glycosylation by Tunicamycin as well as in vitro translation helped clarify the heterogeneity of α-amylase isozymes. Isoelectrofocusing (pH 4-6) of the products, zymograms, and fluorography were employed on the separated isozyme components. The mature and Tunicamycin-treated nonglycosylated forms of α-amylase were found to consist of three isozymes. The in vitro translated precursor forms of α-amylase consisted of four multiple components. These results indicate that heterogeneity of α-amylase isozymes is not due to glycosylation of the enzyme protein but likely to differences in the primary structure of the protein moiety, which altogether support that rice α-amylase isozymes are encoded by multiple genes.

  相似文献   

18.
Properties of four peroxidase isozymes derived from peanut cells were examined. Electrophoresis on various concentrations of polyacrylamide gel indicated that they had the same molecular size. Filtration on Sephadex G-200 gels indicated the same Stoke's radius for all 4 isozymes. They had the same spectral properties in the oxidized, reduced and CO-reduced the pyridine hemochromogen forms, but they differed with regard to heat stability at 50° and 70° and their substrate specificity.  相似文献   

19.
An arylamidase hydrolysing L-leucine-4-nitroanilide was extracted from rat skeletal muscle homogenate and furified by means of anion-exchange chromatography on DEAE-Sephadex A-50 followed by gel filtration on Sephadex G-150 and Sepharose 6B. The enzyme was isolated in the form of three different protein complexes that differ in molecular weight, kinetic data, and sensitivity to metal ions. As studied by SDS-gel electrophoresis and repeated gel chromatography on Sepharose 6B these forms are: 1. a stable monomer (A1) of Mr 122 000; 2. a stable dimer (A2) of Mr 244 000; and 3. a stable polymer (A3) of more than Mr 4·106. The arylamidase was optimally active at pH 7.3 and did not require metal ions. Treatment with 1,10-phenanthroline resulted in complete inactivation, the activity could be restored by the addition of manganous chloride. The sulphhydryl-blocking reagent 4-hydroxymercuribenzoate strongly inactivated the arylamidase, this inhibition could be reversed by the addition of 2-mercaptoethanol. Addition of phenylmethylsulfonyl fluoride had no effect on the enzyme activity. Furthermore, the influence of metal ions as well as the substrate specificity were investigated and compared for all three forms of arylamidase.  相似文献   

20.
Three major low-pI zones of aldehyde dehydrogenase (aldehyde:NAD+ oxidoreductase, EC 1.2.1.3) may be visualized with specific histochemical staining after starch gel electrophoresis at pH 7.4 of Caucasian human liver extracts, whereas about 50% of Chinese human liver extracts show only two such zones. The three zones of activity were purified to apparent homogeneity from Caucasian liver. The substrate specificity of each form was investigated by double reciprocal plots using 13 aldehydes of various chemistries. The acetaldehyde-preferring isozyme I lacking in 50% of Chinese livers had a slightly lower native and subunit molecular weight than the "universal' isozymes IIa and IIb. All forms were highly sensitive to disulfiram inhibition. This inhibition could be protected against, or reversed, by dithiothreitol. 2,2'-Dithiodipyridine was a slower inhibitor of isoenzyme I. All three purified forms of the enzyme, as well as crude extracts of normal and isozyme I-deficient Chinese livers, showed positive immunoreactivity to antibodies prepared in rabbits against type I enzyme. Tryptic peptide maps of forms IIa and IIb were almost identical, whereas that of form I, although showing some similarities, was clearly different. These results provide a consistent explanation for the acetaldehyde-mediated extreme sensitivity to moderate alcohol ingestion shown normally by about 50% of oriental subjects and during disulfiram (Antabuse) therapy by all subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号